Mainardi Andrea, Börsch Anastasiya, Occhetta Paola, Ivanek Robert, Ehrbar Martin, Krattiger Lisa, Oertle Philipp, Loparic Marko, Martin Ivan, Rasponi Marco, Barbero Andrea
Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, Basel, 4031, Switzerland.
Department of Electronics, Information and Bioengineering, Politecnico di Milano, Via Golgi 39, Milan, 20133, Italy.
Adv Healthc Mater. 2025 Jun 25:e2501588. doi: 10.1002/adhm.202501588.
Altered joint loading due to articular malalignment, instability, or trauma is an important risk factor for osteoarthritis (OA), the most prevalent musculoskeletal disease worldwide. However, the molecular links between aberrant mechanics and OA initiation/progression remain unclear due to the lack of human models capturing the interplay of joint tissues in a mechanically active environment. Replicating the strain gradient across the osteochondral interface remains an unmet challenge. Here, an OsteoChondral Unit (OCU)-on-Chip platform is engineered and functionally validated where composite hyaline cartilage-mineralized subchondral microtissues are exposed to strain-controlled, tissue-specific compression levels akin, respectively, to those of cartilage and of the mineralized tissue at the osteochondral interface in vivo. Upon hyperphysiological loading of the OCU-on-Chip, an increase in the release and accumulation of calcium crystals, as reported in OA patients, is observed. Using single-cell RNA sequencing, the role of the mineralized subchondral layer in sustaining chondrocyte subpopulations implicated in OA is demonstrated, and an overview of the transcriptional machinery activated by mechanical overstimulation is provided. The OCU-on-Chip captures clinically observed changes including alterations in ribosome biogenesis and apoptosis-related pathways. Thus, it represents a valuable model for investigating mechanisms upstream of cartilage degeneration and may facilitate the identification of novel druggable biological pathways.
由于关节排列不齐、不稳定或创伤导致的关节负荷改变是骨关节炎(OA)的一个重要风险因素,OA是全球最常见的肌肉骨骼疾病。然而,由于缺乏能够在机械活跃环境中捕捉关节组织相互作用的人体模型,异常力学与OA起始/进展之间的分子联系仍不清楚。复制骨软骨界面上的应变梯度仍然是一个未解决的挑战。在此,设计并功能验证了一种芯片上骨软骨单元(OCU)平台,其中复合透明软骨-矿化软骨下微组织分别暴露于应变控制的、类似于体内骨软骨界面处软骨和矿化组织的组织特异性压缩水平。在对芯片上OCU进行超生理负荷加载后,观察到如OA患者中所报道的钙晶体释放和积累增加。使用单细胞RNA测序,证明了矿化软骨下层在维持与OA相关的软骨细胞亚群中的作用,并提供了由机械过度刺激激活的转录机制概述。芯片上OCU捕捉到了临床上观察到的变化,包括核糖体生物合成和凋亡相关途径的改变。因此,它是研究软骨退变上游机制的有价值模型,可能有助于识别新的可药物作用的生物学途径。