Suppr超能文献

基于深度强化学习和轨迹优化的分布式多机器人导航

Decentralized Multi-Robot Navigation Based on Deep Reinforcement Learning and Trajectory Optimization.

作者信息

Bi Yifei, Luo Jianing, Zhu Jiwei, Liu Junxiu, Li Wei

机构信息

College of Foreign Languages, University of Shanghai for Science and Technology, Shanghai 200093, China.

College of Intelligent Robotics and Advanced Manufacturing, Fudan University, Shanghai 200433, China.

出版信息

Biomimetics (Basel). 2025 Jun 4;10(6):366. doi: 10.3390/biomimetics10060366.

Abstract

Multi-robot systems are significant in decision-making capabilities and applications, but avoiding collisions during movement remains a critical challenge. Existing decentralized obstacle avoidance strategies, while low in computational cost, often fail to ensure safety effectively. To address this issue, this paper leverages graph neural networks (GNNs) and deep reinforcement learning (DRL) to aggregate high-dimensional features as inputs for reinforcement learning (RL) to generate paths. Additionally, it introduces safety constraints through an artificial potential field (APF) to optimize these trajectories. Additionally, a constrained nonlinear optimization method further refines the APF-adjusted paths, resulting in the development of the GNN-RL-APF-Lagrangian algorithm. By combining APF and nonlinear optimization techniques, experimental results demonstrate that this method significantly enhances the safety and obstacle avoidance capabilities of multi-robot systems in complex environments. The proposed GNN-RL-APF-Lagrangian algorithm achieves a 96.43% success rate in sparse obstacle environments and 89.77% in dense obstacle scenarios, representing improvements of 59% and 60%, respectively, over baseline GNN-RL approaches. The method maintains scalability up to 30 robots while preserving distributed execution properties.

摘要

多机器人系统在决策能力和应用方面具有重要意义,但在运动过程中避免碰撞仍然是一项关键挑战。现有的分散式避障策略虽然计算成本低,但往往无法有效确保安全。为了解决这个问题,本文利用图神经网络(GNN)和深度强化学习(DRL)来聚合高维特征,作为强化学习(RL)生成路径的输入。此外,它通过人工势场(APF)引入安全约束来优化这些轨迹。此外,一种约束非线性优化方法进一步细化了经APF调整的路径,从而开发出了GNN-RL-APF-拉格朗日算法。通过结合APF和非线性优化技术,实验结果表明,该方法显著提高了多机器人系统在复杂环境中的安全性和避障能力。所提出的GNN-RL-APF-拉格朗日算法在稀疏障碍物环境中的成功率达到96.43%,在密集障碍物场景中的成功率为89.77%,分别比基线GNN-RL方法提高了59%和60%。该方法在保持分布式执行特性的同时,可扩展性高达30个机器人。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9c0/12190238/a057b51ec579/biomimetics-10-00366-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验