Jeon Jongmin, Kim Dongkeon, Kim Suhan
R&D Institute, Hyorim E&I, 20 Gukgasandan-daero 40 beon-gil, Dalseong-gun, Daegu 43008, Republic of Korea.
Department of Civil Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea.
Membranes (Basel). 2025 Jun 7;15(6):171. doi: 10.3390/membranes15060171.
Forward osmosis (FO) is a membrane separation process driven by the osmotic pressure difference between a high-salinity draw solution (DS) and a low-salinity feed solution (FS). This pressure-free dewatering method is highly energy efficient, making it suitable for concentration and resource recovery. However, conventional FO systems using series-connected modules suffer from progressive DS dilution and FS concentration, leading to a reduction in the osmotic driving force and thereby limiting the overall performance. To address this issue, we propose a novel hybrid FO module configuration in which the FS flows in series while the DS is split and distributed in parallel across moules. This configuration was evaluated using an experimentally validated FO module model and RO simulation tools. Under seawater (600 mM NaCl) as DS and brackish water (10 mM NaCl) as FS, a conventional three-stage FO module achieved an enrichment ratio of 2.5 with an energy consumption of 0.151 kWh/m. In contrast, the proposed draw solution split distribution (DSSD) achieved an enrichment ratio of 12.5 at a reduced energy consumption of 0.137 kWh/m. In comparison, a reverse osmosis system consuming 0.58 kWh/m achieved a similar enrichment ratio of 12.3. These results demonstrate the high energy efficiency and dewatering capacity of the proposed FO configuration, highlighting its potential for industrial applications in food processing, beverage production, pharmaceuticals and agriculture.
正向渗透(FO)是一种膜分离过程,由高盐度汲取溶液(DS)和低盐度进料溶液(FS)之间的渗透压差异驱动。这种无压脱水方法具有很高的能源效率,使其适用于浓缩和资源回收。然而,使用串联模块的传统FO系统存在汲取溶液逐渐稀释和进料溶液浓缩的问题,导致渗透驱动力降低,从而限制了整体性能。为了解决这个问题,我们提出了一种新颖的混合FO模块配置,其中进料溶液串联流动,而汲取溶液则被分流并在模块间并行分布。使用经过实验验证的FO模块模型和反渗透模拟工具对这种配置进行了评估。在以海水(600 mM NaCl)作为汲取溶液和微咸水(10 mM NaCl)作为进料溶液的情况下,传统的三级FO模块实现了2.5的浓缩比,能耗为0.151 kWh/m。相比之下,所提出的汲取溶液分流分布(DSSD)配置在能耗降低至0.137 kWh/m的情况下实现了12.5的浓缩比。相比之下,消耗0.58 kWh/m的反渗透系统实现了类似的12.3的浓缩比。这些结果证明了所提出的FO配置具有很高的能源效率和脱水能力,突出了其在食品加工、饮料生产、制药和农业等工业应用中的潜力。