文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

胰腺癌转化研究中通过系统建模在蛋白质组学数据库中进行知识发现。

Knowledge Discovery in Databases of Proteomics by Systems Modeling in Translational Research on Pancreatic Cancer.

作者信息

Resell Mathilde, Graarud Elisabeth Pimpisa, Rabben Hanne-Line, Sharma Animesh, Hagen Lars, Hoang Linh, Skogaker Nan T, Aarvik Anne, Svensson Magnus K, Amrutkar Manoj, Verbeke Caroline S, Batra Surinder K, Qvigstad Gunnar, Wang Timothy C, Rustgi Anil, Chen Duan, Zhao Chun-Mei

机构信息

Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7030 Trondheim, Norway.

PROMEC-Proteomics and Modomics Experimental Core Facility at NTNU and the Central Norway Regional Health Authority, 7030 Trondheim, Norway.

出版信息

Proteomes. 2025 May 29;13(2):20. doi: 10.3390/proteomes13020020.


DOI:10.3390/proteomes13020020
PMID:40559993
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12196815/
Abstract

BACKGROUND: Knowledge discovery in databases (KDD) can contribute to translational research, also known as translational medicine, by bridging the gap between and studies, and clinical applications. Here, we propose a 'systems modeling' workflow for KDD. METHODS: This framework includes the data collection of a composition model (various research models), processing model (proteomics) and analytical model (bioinformatics, artificial intelligence/machine leaning and pattern evaluation), knowledge presentation, and feedback loops for hypothesis generation and validation. We applied this workflow to study pancreatic ductal adenocarcinoma (PDAC). RESULTS: We identified the common proteins between human PDAC and various research models (cells, spheroids and organoids) and (mouse mice). Accordingly, we hypothesized potential translational targets on hub proteins and the related signaling pathways, PDAC-specific proteins and signature pathways, and high topological proteins. CONCLUSIONS: This systems modeling workflow can be a valuable method for KDD, facilitating knowledge discovery in translational targets in general, and in particular to PADA in this case.

摘要

背景:数据库知识发现(KDD)可通过弥合研究与临床应用之间的差距,为转化研究(也称为转化医学)做出贡献。在此,我们提出一种用于KDD的“系统建模”工作流程。 方法:该框架包括组成模型(各种研究模型)、处理模型(蛋白质组学)和分析模型(生物信息学、人工智能/机器学习和模式评估)的数据收集、知识呈现以及用于假设生成和验证的反馈回路。我们应用此工作流程来研究胰腺导管腺癌(PDAC)。 结果:我们确定了人类PDAC与各种研究模型(细胞、球体和类器官)以及(小鼠)之间的共同蛋白质。据此,我们对枢纽蛋白和相关信号通路、PDAC特异性蛋白和特征通路以及高拓扑蛋白上的潜在转化靶点进行了假设。 结论:这种系统建模工作流程可以成为KDD的一种有价值的方法,总体上有助于在转化靶点中发现知识,特别是在这种情况下对胰腺导管腺癌的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae78/12196815/ce3f3659136d/proteomes-13-00020-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae78/12196815/81372081703e/proteomes-13-00020-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae78/12196815/6e80b7167262/proteomes-13-00020-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae78/12196815/c1378d14e7b3/proteomes-13-00020-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae78/12196815/5c2adaad6a4d/proteomes-13-00020-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae78/12196815/e17ab56c86e2/proteomes-13-00020-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae78/12196815/6263afff91d7/proteomes-13-00020-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae78/12196815/3576de3ec56b/proteomes-13-00020-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae78/12196815/ce3f3659136d/proteomes-13-00020-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae78/12196815/81372081703e/proteomes-13-00020-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae78/12196815/6e80b7167262/proteomes-13-00020-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae78/12196815/c1378d14e7b3/proteomes-13-00020-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae78/12196815/5c2adaad6a4d/proteomes-13-00020-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae78/12196815/e17ab56c86e2/proteomes-13-00020-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae78/12196815/6263afff91d7/proteomes-13-00020-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae78/12196815/3576de3ec56b/proteomes-13-00020-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae78/12196815/ce3f3659136d/proteomes-13-00020-g008.jpg

相似文献

[1]
Knowledge Discovery in Databases of Proteomics by Systems Modeling in Translational Research on Pancreatic Cancer.

Proteomes. 2025-5-29

[2]
Knowledge Discovery in Datasets of Proteomics by Systems Modeling in Translational Research on Pancreatic Cancer.

bioRxiv. 2025-2-27

[3]
Proteomics profiling of research models for studying pancreatic ductal adenocarcinoma.

Sci Data. 2025-2-14

[4]
Eliciting adverse effects data from participants in clinical trials.

Cochrane Database Syst Rev. 2018-1-16

[5]
Prediction, screening and characterization of novel bioactive tetrapeptide matrikines for skin rejuvenation.

Br J Dermatol. 2024-6-20

[6]
Quality improvement strategies for diabetes care: Effects on outcomes for adults living with diabetes.

Cochrane Database Syst Rev. 2023-5-31

[7]
Interventions for interpersonal communication about end of life care between health practitioners and affected people.

Cochrane Database Syst Rev. 2022-7-8

[8]
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.

Health Technol Assess. 2006-9

[9]
Systemic treatments for metastatic cutaneous melanoma.

Cochrane Database Syst Rev. 2018-2-6

[10]
Factors that impact on the use of mechanical ventilation weaning protocols in critically ill adults and children: a qualitative evidence-synthesis.

Cochrane Database Syst Rev. 2016-10-4

本文引用的文献

[1]
Characterization of single neurons reprogrammed by pancreatic cancer.

Nature. 2025-4

[2]
Proteomics profiling of research models for studying pancreatic ductal adenocarcinoma.

Sci Data. 2025-2-14

[3]
Current and future immunotherapeutic approaches in pancreatic cancer treatment.

J Hematol Oncol. 2024-6-4

[4]
Key node identification for a network topology using hierarchical comprehensive importance coefficients.

Sci Rep. 2024-5-27

[5]
Driver Mutations in Pancreatic Cancer and Opportunities for Targeted Therapy.

Cancers (Basel). 2024-5-9

[6]
Emerging Trends in Gastrointestinal Cancer Targeted Therapies: Harnessing Tumor Microenvironment, Immune Factors, and Metabolomics Insights.

Gastroenterology. 2024-10

[7]
Pancreatic cancer tumor microenvironment is a major therapeutic barrier and target.

Front Immunol. 2024

[8]
Integrin signaling in cancer: bidirectional mechanisms and therapeutic opportunities.

Cell Commun Signal. 2023-9-28

[9]
Pancreatic cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up.

Ann Oncol. 2023-11

[10]
Immunotherapy and Pancreatic Cancer: A Lost Challenge?

Life (Basel). 2023-6-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索