Gu Peng-Cheng, Chen Chun-Fa, Ma Lian-Ju, Wang Lu, Bai Yan, Yang Jia-Qi, Zhu Shu, Li Quan, Bai Jia-Hao, Sun Yang-Yi, Chen Xin-Hong, Jiang Xin-Ya, Liu Qian, Qian Hang
Laboratory of Pharmacy and Chemistry, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, China.
Department of Pulmonary and Critical Care Medicine, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
ACS Appl Mater Interfaces. 2025 Jul 9;17(27):38971-38984. doi: 10.1021/acsami.5c07816. Epub 2025 Jun 25.
DNA nanostructures are extensively utilized in synthetic biology, biosensing, bioimaging, and therapeutic delivery because of their programmability and biocompatibility. Although DNA nanostructure-based drug delivery systems have shown significant potential, the clinical application of nucleic acid drugs has been hindered by their biological instability and low delivery efficiency. This study proposes utilizing a cationic targeting peptide by combining a cell-penetrating peptide (TAT) with a cancer cell-targeting peptide (RGD) instead of conventional magnesium ions to facilitate the self-assembly of defined DNA nanostructures. study results show that the peptide/DNA nanostructures exhibited high membrane penetration, integrin targeting, and lysosome escape properties due to the RGD-TAT peptide, leading to improved cellular uptake efficiency. Furthermore, the structural and serum stabilities of DNA nanostructures were significantly enhanced by using protease-resistant D-type peptides for assembly, which will further amplify the application potential of DNA nanostructures in physiological conditions. As a proof of concept, a doxorubicin and KRAS siRNA-loaded RGD-TAT/DNA nanotube (NT-DOX-siKRAS) was utilized as a nanomedicine platform for anticancer therapy on an immunodeficient mouse tumor model. The NT-DOX-siKRAS demonstrated excellent tumor accumulation efficiency and anticancer effects . Mechanistically, the NT-DOX-siKRAS suppressed KRAS expression and improved the therapeutic effects of chemo drug doxorubicin by the higher drug delivery efficiency endowed by peptides. These findings suggest that the introduction of peptides can greatly enhance the functionality and performance of DNA nanostructures as drug delivery systems. The diversity and potent function of peptides will further expand the significant potential of DNA nanomedicine for future biomedical applications.
由于其可编程性和生物相容性,DNA纳米结构在合成生物学、生物传感、生物成像和治疗递送中得到了广泛应用。尽管基于DNA纳米结构的药物递送系统已显示出巨大潜力,但核酸药物的临床应用却因其生物不稳定性和低递送效率而受到阻碍。本研究提出通过将细胞穿透肽(TAT)与癌细胞靶向肽(RGD)结合,利用阳离子靶向肽来促进特定DNA纳米结构的自组装,而非使用传统的镁离子。研究结果表明,由于RGD-TAT肽的作用,肽/DNA纳米结构表现出高膜穿透性、整合素靶向性和溶酶体逃逸特性,从而提高了细胞摄取效率。此外,通过使用抗蛋白酶的D型肽进行组装,显著增强了DNA纳米结构的结构稳定性和血清稳定性,这将进一步扩大DNA纳米结构在生理条件下的应用潜力。作为概念验证,一种负载阿霉素和KRAS小干扰RNA的RGD-TAT/DNA纳米管(NT-DOX-siKRAS)被用作纳米药物平台,用于在免疫缺陷小鼠肿瘤模型上进行抗癌治疗。NT-DOX-siKRAS表现出优异的肿瘤蓄积效率和抗癌效果。从机制上讲,NT-DOX-siKRAS通过肽赋予的更高药物递送效率抑制了KRAS表达,并提高了化疗药物阿霉素的治疗效果。这些发现表明,肽的引入可以极大地增强DNA纳米结构作为药物递送系统的功能和性能。肽的多样性和强大功能将进一步拓展DNA纳米医学在未来生物医学应用中的巨大潜力。
ACS Appl Mater Interfaces. 2025-7-9
Arch Ital Urol Androl. 2025-6-30
Psychopharmacol Bull. 2024-7-8
Cochrane Database Syst Rev. 2018-2-6