Zhang Shuai, Cui Shun, Li Qining, Zheng Xin, Liu Jingsheng
College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
Ultrason Sonochem. 2025 Jun 13;120:107429. doi: 10.1016/j.ultsonch.2025.107429.
The corn gluten meal-corn stalk mixture (CCM) was used as a fermentation substrate composed of two agricultural by-products: corn gluten meal, obtained during wet milling for starch and syrup production, and corn stalk, a lignocellulosic residue left after corn harvest. To facilitate the valorization of agricultural by-products, ultrasound-assisted fermentation was conducted using Aspergillus niger and Limosilactobacillus fermentum at power densities of 50 W/L (F-L) and 100 W/L (F-H), respectively. CCM ultrasound-assisted fermentation led to significant degradation of macromolecules and zein. Compared to the non-ultrasound group, trichloroacetic acid-soluble protein in F-H increased by 6.79-fold, and total amino acids increased by 1.44-fold. Total phenols and flavonoids in F-L and F-H increased, thereby enhancing the antioxidant capacity of CCM. Ultrasound-assisted fermentation primarily increased the abundance of Limosilactobacillus, Pediococcus, Pichia, and Aspergillus, while reducing the abundance of Pantoea, Xanthomonas, Curtobacterium, Staphylococcus, Alternaria, Blumeria, Cladosporium, Fusarium, and Mucor. Environmental acidification drove the microbial community to shift towards more acid-tolerant species. Functional predictions revealed upregulated pathways involved in amino acid and bioactive substance biosynthesis, providing a new perspective on the high-value utilization of CCM.
玉米蛋白粉-玉米秸秆混合物(CCM)被用作发酵底物,它由两种农业副产品组成:玉米蛋白粉,是在淀粉和糖浆生产的湿磨过程中获得的;以及玉米秸秆,是玉米收获后留下的木质纤维素残渣。为了促进农业副产品的价值提升,分别使用黑曲霉和发酵乳杆菌在功率密度为50 W/L(F-L)和100 W/L(F-H)的条件下进行超声辅助发酵。CCM超声辅助发酵导致大分子和玉米醇溶蛋白显著降解。与非超声组相比,F-H组中三氯乙酸可溶性蛋白增加了6.79倍,总氨基酸增加了1.44倍。F-L组和F-H组中的总酚和黄酮类物质增加,从而提高了CCM的抗氧化能力。超声辅助发酵主要增加了发酵乳杆菌、片球菌、毕赤酵母和曲霉的丰度,同时降低了泛菌属、黄单胞菌属、短小杆菌属、葡萄球菌属、链格孢属、白粉菌属、枝孢属、镰刀菌属和毛霉属的丰度。环境酸化促使微生物群落向更耐酸的物种转变。功能预测显示参与氨基酸和生物活性物质生物合成的途径上调,为CCM的高值化利用提供了新视角。