Suppr超能文献

需求不确定下具有可持续性和稳健性的电动汽车电池回收与再制造供应链网络设计

An electric vehicle battery recycling and remanufacturing supply chain network design with sustainability and robustness under demand uncertainty.

作者信息

Han Bing, Wang Mengjun, Xu Yuan, Park Yongshin

机构信息

School of Maritime Economics and Management, Dalian Maritime University, 1 Linghai Road, Dalian, Liaoning Province, 116026, China; Collaborative Innovation Centre for Transport Study, Dalian Maritime University, 1 Linghai Road, Dalian, Liaoning Province, 116026, China.

Department of Marketing, Operations, and Analytics, Bill Munday School of Business, St. Edward's University, 3001 South Congress, Austin, TX, 78704, United States.

出版信息

J Environ Manage. 2025 Aug;390:126202. doi: 10.1016/j.jenvman.2025.126202. Epub 2025 Jun 24.

Abstract

With the acceptance of new energy vehicles, there is a disconnect between the rapid growth of electric vehicles and the nascent phase of the battery recycling industry. In response to sustainable development, this paper presents a multi-objective model integrating economic, environmental, and social dimensions to design a sustainable closed-loop supply chain network for the electric vehicle battery industry. In addition, a resilient strategy is applied, and a Fuzzy Robust Stochastic model incorporating Conditional Value at Risk (FRS-CVaR) is proposed to enhance the overall resilience and robustness of the supply chain network. To solve the proposed model, an improved NSGA-II is developed by applying an initialization strategy to enhance the quality of initial solutions, incorporating an adaptive evolutionary strategy to accelerate convergence while maintaining population diversity, and use elite retention strategy to avoid inferior regions. The deterministic model and the FRS-CVaR model are solved using Gurobi, NSGA-II, and the improved NSGA-II, respectively. The improved NSGA-II algorithm achieves a 40 % and 22 % increase in the Hypervolume (HV) metric, while Spacing values are reduced by 27 % and 52 %, respectively, compared to NSGA-II. The results demonstrate that the improved NSGA-II converges faster and exhibits superior performance. Study findings show that the proposed model can be applied as an efficient tool for designing a sustainable, robust supply chain network based on decision makers' preferences. The results and analysis conclude with management insights on balancing robustness and sustainability in the supply chain network and adjusting the supply chain for products with different recycling rates and material recovery rates or future prospects.

摘要

随着新能源汽车被广泛接受,电动汽车的快速增长与电池回收行业的初期发展之间存在脱节。为响应可持续发展,本文提出了一个整合经济、环境和社会维度的多目标模型,以设计电动汽车电池行业的可持续闭环供应链网络。此外,应用了一种弹性策略,并提出了一种结合条件风险价值的模糊鲁棒随机模型(FRS-CVaR),以增强供应链网络的整体弹性和稳健性。为求解所提出的模型,通过应用初始化策略来提高初始解的质量、纳入自适应进化策略以加速收敛同时保持种群多样性、并使用精英保留策略来避免劣质区域,开发了一种改进的NSGA-II算法。确定性模型和FRS-CVaR模型分别使用Gurobi、NSGA-II和改进的NSGA-II进行求解。与NSGA-II相比,改进的NSGA-II算法在超体积(HV)指标上分别提高了40%和22%,而间距值分别降低了27%和52%。结果表明,改进的NSGA-II收敛更快且表现出卓越的性能。研究结果表明,所提出的模型可作为一种基于决策者偏好设计可持续、稳健供应链网络的有效工具。结果和分析最后给出了关于在供应链网络中平衡稳健性和可持续性以及针对具有不同回收率和材料回收率或未来前景的产品调整供应链的管理见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验