基于SHAP方法的可解释机器学习算法研究溴化阻燃剂暴露对高尿酸血症的影响。

Effect of the exposure to brominated flame retardants on hyperuricemia using interpretable machine learning algorithms based on the SHAP methodology.

作者信息

Cai Yu, Huang Xi-Ru, Wang Sheng-Jia, Liang Ying-Chao, Liu De-Liang, Chu Shu-Fang, Li Hui-Lin

机构信息

The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China.

Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China.

出版信息

PLoS One. 2025 Jun 26;20(6):e0325896. doi: 10.1371/journal.pone.0325896. eCollection 2025.

Abstract

BACKGROUND

Brominated flame retardants (BFRs) are classified as important endocrine disruptors and persistent organic pollutants; nevertheless, there is no comprehensive investigation to evaluate the association between BFRs and hyperuricemia, and the available studies related to this field are exceptionally scarce.

METHODS

For this study, we enrolled 3,812 individuals from NHANES 2005-2016, with nine different types of BFRs serving as the exposure. We conducted advanced machine learning techniques, along with regression analysis to validate our findings from diverse perspectives. Weighted logistic regression were employed to evaluate the association of BFRs for both continuous variables after logarithmic transformation and their quartile subgroups with hyperuricemia. Restricted cubic spline (RCS) analysis was conducted to identify whether a non-linear relationship exists. Subgroup analysis enabled us to explore potential interactions of research findings across different groups. Weighted quantile sum (WQS) regression was performed to assess collective mixture sum impact, along with contributions of each component. Nine machine-learning models were developed for hyperuricemia prediction, and six discrimination characteristics were applied to select the optimal model. SHapley Additive exPlanations (SHAP) was utilized to interpret the contributions of selected variables for model decision-making capacity.

RESULTS

Several BFRs exhibited noticeable positive correlation with the prevalence of hyperuricemia, including PBDE28 (OR: 1.27, 95% CI: 1.05-1.54, P-value = 0.014), PBDE47 (OR: 1.19, 95% CI: 1.02-1.40, P-value = 0.032), PBDE85 (OR: 1.16, 95% CI: 1.01-1.34, P-value = 0.036), PBDE99 (OR: 1.17, 95% CI: 1.02-1.34, P-value = 0.025), and PBDE154 (OR: 1.16, 95% CI: 1.00-1.34, P-value = 0.050) after fully adjustment. The WQS analysis found that the sum effect of BFRs was positively associated with hyperuricemia, of which PBDE28 (28.70%), PBDE85 (22.10%) and PBDE47 (14.90%) were the top 3 components. XGboost exhibited superior performance across several important metrics. The SHAP analysis revealed that the PBDE85, PBDE28 and PBDE154 exhibited considerable influence, ranking after "BMI≥30", "Race-Non-Hispanic Black" and "Hypertension-Yes".

CONCLUSIONS

Combining the outcomes, our study identified PBDE28 and PBDE85 as the two major significant contributors to elevated prevalence of hyperuricemia. Other components, such as PBDE154, PBDE47, PBDE99, and PBDE100, emerged as potential pollutants. These pioneering efforts highlighted the previously underrecognized impact on this environmental and public health concern.

摘要

背景

溴化阻燃剂(BFRs)被归类为重要的内分泌干扰物和持久性有机污染物;然而,目前尚无全面的调查来评估BFRs与高尿酸血症之间的关联,且该领域现有的研究极为稀少。

方法

在本研究中,我们纳入了2005 - 2016年美国国家健康与营养检查调查(NHANES)中的3812名个体,将九种不同类型的BFRs作为暴露因素。我们运用了先进的机器学习技术以及回归分析,从不同角度验证我们的研究结果。加权逻辑回归用于评估对数转换后的连续变量及其四分位数亚组的BFRs与高尿酸血症之间的关联。进行受限立方样条(RCS)分析以确定是否存在非线性关系。亚组分析使我们能够探索不同组间研究结果的潜在相互作用。进行加权分位数和(WQS)回归以评估集体混合物总和影响以及各成分的贡献。开发了九个用于高尿酸血症预测的机器学习模型,并应用六个判别特征来选择最优模型。利用SHapley加性解释(SHAP)来解释所选变量对模型决策能力的贡献。

结果

经过充分调整后,几种BFRs与高尿酸血症患病率呈现出显著的正相关,包括多溴二苯醚28(OR:1.27,95%CI:1.05 - 1.54,P值 = 0.014)、多溴二苯醚47(OR:1.19,95%CI:1.02 - 1.40,P值 = 0.032)、多溴二苯醚85(OR:1.16,95%CI:1.01 - 1.34,P值 = 0.036)、多溴二苯醚99(OR:1.17,95%CI:1.02 - 1.34,P值 = 0.025)和多溴二苯醚154(OR:1.16,95%CI:1.00 - 1.34,P值 = 0.050)。WQS分析发现BFRs的总和效应与高尿酸血症呈正相关,其中多溴二苯醚28(28.70%)、多溴二苯醚85(22.10%)和多溴二苯醚47(14.90%)是前三大成分。在几个重要指标方面,XGBoost表现出卓越的性能。SHAP分析表明,多溴二苯醚85、多溴二苯醚28和多溴二苯醚154具有相当大的影响,排名仅次于“BMI≥30”、“种族 - 非西班牙裔黑人”和“高血压 - 是”。

结论

综合研究结果,我们的研究确定多溴二苯醚28和多溴二苯醚85是高尿酸血症患病率升高的两个主要显著贡献因素。其他成分,如多溴二苯醚154、多溴二苯醚47、多溴二苯醚99和多溴二苯醚100,成为潜在污染物。这些开创性的研究突出了此前未被充分认识的对这一环境和公共卫生问题的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b10/12200863/d15f11ab7dcc/pone.0325896.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索