Quan Xiaolong, Tong Tong, Li Tao, Han Dawei, Cui Baolong, Xiong Jing, Cui Zekai, Guo Hao, Jiao Jinqing, Wei Yuechang
State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China.
Molecules. 2025 Jun 14;30(12):2592. doi: 10.3390/molecules30122592.
This study employs molecular dynamics simulations to investigate counterion effects (Li, Na, K) on the interfacial aggregation of mixed short-chain fluorocarbon, Perfluorohexanoic acid (PFHA), and Sodium dodecyl sulfate (SDS) surfactants. Motivated by the need for greener surfactant alternatives and a fundamental understanding of molecular interactions governing their behavior, we demonstrate that counterion hydration radius critically modulates system organization. K ions induce superior monolayer condensation and interfacial performance compared to Li and Na counterparts, as evidenced by threefold analysis: (1) RMSD/MSD-confirmed equilibrium attainment ensures data reliability; (2) 1D/2D density profiles and surface tension measurements reveal K-enhanced packing density (lower solvent-accessible surface area versus Na and Li systems); (3) Electrostatic potential analysis identifies synergistic complementarity between SDS's hydrophobic stabilization via dodecyl chain interactions and PFHA's charge uniformity, optimizing molecular-level charge screening. Radial distribution function analysis demonstrates K's stronger affinity for SDS head groups, with preferential sulfate coordination reducing surfactant-water hydration interactions. This behavior correlates with hydrogen-bond population reduction, attributed to SDS groups functioning as multidentate ligands-their tetrahedral oxygen arrangement facilitates cooperative hydrogen-bond networks, while counterion-specific charge screening competitively modulates bond formation. The resultant interfacial restructuring enables ordered molecular arrangements with lower system curvature than those observed in Li and Na-containing systems. These findings elucidate counterion-mediated interfacial modulation mechanisms and establish K as an optimal candidate for enhancing PFHA/SDS mixture performance through hydration-radius screening. The work provides molecular-level guidelines for designing eco-friendly surfactant systems with tailored interfacial properties.
本研究采用分子动力学模拟来研究抗衡离子(Li、Na、K)对混合短链氟碳化合物全氟己酸(PFHA)和十二烷基硫酸钠(SDS)表面活性剂界面聚集的影响。出于对更绿色表面活性剂替代品的需求以及对控制其行为的分子相互作用的基本理解,我们证明抗衡离子水合半径对系统组织具有关键的调节作用。与Li和Na抗衡离子相比,K离子能诱导出更优异的单层凝聚和界面性能,这通过三方面分析得以证明:(1)均方根偏差/均方位移证实达到平衡确保了数据可靠性;(2)一维/二维密度分布和表面张力测量表明K增强了堆积密度(与Na和Li系统相比,溶剂可及表面积更低);(3)静电势分析确定了SDS通过十二烷基链相互作用实现的疏水稳定作用与PFHA的电荷均匀性之间的协同互补性,优化了分子水平的电荷筛选。径向分布函数分析表明K对SDS头部基团具有更强的亲和力,优先的硫酸根配位减少了表面活性剂 - 水的水合相互作用。这种行为与氢键数量的减少相关,这归因于SDS基团作为多齿配体的作用——它们的四面体氧排列促进了协同氢键网络,而抗衡离子特异性电荷筛选竞争性地调节键的形成。由此产生的界面重构使得分子排列有序,系统曲率低于含Li和Na的系统。这些发现阐明了抗衡离子介导的界面调节机制,并确定K是通过水合半径筛选增强PFHA/SDS混合物性能的最佳候选者。这项工作为设计具有定制界面性质的环保表面活性剂系统提供了分子水平的指导方针。