Huang Xinyi, Zhang Xianbin, Millham Richard, Xu Lin, Wu Wanqing
School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China.
Department of Information Technology, Durban University of Technology, Durban 4001, South Africa.
Sensors (Basel). 2025 Jun 9;25(12):3625. doi: 10.3390/s25123625.
Hypertension and blood pressure variability (BPV) are major risk factors for cardiovascular disease (CVD). Single-channel photoplethysmography (PPG) has emerged as a promising daily blood pressure (BP) monitoring tool. However, estimating BP trends presents challenges due to complex temporal dependencies and continuous fluctuations. Traditional methods often address BP prediction as isolated tasks and focus solely on temporal dependencies within a limited time window, which may fall short of capturing the intricate BP fluctuation patterns implied in varying time spans, particularly amidst constant BP variations. To address this, we propose a novel deep learning model featuring a two-stage architecture and a new input structure called contextual cycles. This model estimates beat-to-beat systolic blood pressure (SBP) trends as a sequence prediction task, transforming the output from a single SBP value into a sequence. In the first stage, parallel ResU Blocks are utilized to extract fine-grained features from each cycle. The generated feature vectors are then processed by Transformer layers with relative position encoding (RPE) to capture inter-cycle interactions and temporal dependencies in the second stage. Our proposed model demonstrates robust performance in beat-to-beat SBP trend estimation, achieving a mean absolute error (MAE) of 3.186 mmHg, a Pearson correlation coefficient applied to sequences (Rseq) of 0.743, and a variability error (VE) of 1.199 mmHg. It excels in steady and abrupt substantial fluctuation states, outperforming baseline models. The results reveal that our method meets the requirements of the AAMI standard and achieves grade A according to the BHS standard. Overall, our proposed method shows significant potential for reliable daily health monitoring.
高血压和血压变异性(BPV)是心血管疾病(CVD)的主要危险因素。单通道光电容积脉搏波描记法(PPG)已成为一种有前景的日常血压(BP)监测工具。然而,由于复杂的时间依赖性和持续波动,估计血压趋势存在挑战。传统方法通常将血压预测作为孤立的任务,仅关注有限时间窗口内的时间依赖性,这可能无法捕捉不同时间跨度中隐含的复杂血压波动模式,尤其是在血压持续变化的情况下。为了解决这个问题,我们提出了一种新颖的深度学习模型,该模型具有两阶段架构和一种称为上下文循环的新输入结构。该模型将逐搏收缩压(SBP)趋势估计作为序列预测任务,将单个SBP值的输出转换为一个序列。在第一阶段,并行ResU块用于从每个循环中提取细粒度特征。然后,生成的特征向量由带有相对位置编码(RPE)的Transformer层进行处理,以在第二阶段捕捉循环间的相互作用和时间依赖性。我们提出的模型在逐搏SBP趋势估计中表现出强大的性能,平均绝对误差(MAE)为3.186 mmHg,应用于序列的皮尔逊相关系数(Rseq)为0.743,变异误差(VE)为1.199 mmHg。它在稳定和突然的大幅波动状态下表现出色,优于基线模型。结果表明,我们的方法符合AAMI标准的要求,并根据BHS标准达到A级。总体而言,我们提出的方法在可靠的日常健康监测方面显示出巨大潜力。