Suppr超能文献

淋巴细胞与单核细胞比值在子宫内膜癌患者中的预后价值:一项更新的系统评价和荟萃分析

Prognostic value of lymphocyte-to-monocyte ratio in patients with endometrial cancer: an updated systematic review and meta-analysis.

作者信息

Huang Zijing, Yang Donghua, Liu Congrong

机构信息

Peking University First Hospital, Beijing, China.

College of Urban and Environmental Sciences, Peking University, Beijing, China.

出版信息

PeerJ. 2025 Jun 23;13:e19345. doi: 10.7717/peerj.19345. eCollection 2025.

Abstract

BACKGROUND

Evaluating the risk of metastasis at diagnosis and the likelihood of future recurrence is crucial for the effective management of endometrial cancer (EC). While conventional prognostic indicators hold importance, they often fall short in predicting recurrence, especially in low-risk patients. This study evaluates the prognostic value of the lymphocyte-to-monocyte ratio (LMR) for overall survival (OS), disease-free survival (DFS), and cancer-specific survival (CSS) in EC patients.

METHODS

Eligible studies that provided pretreatment cutoff values of LMR, hazard ratios (HRs), and 95% confidence intervals (CIs) for OS, DFS, CSS, and progression-free survival (PFS) were included in this meta-analysis. Two independent reviewers collected and evaluated the data, and the quality of the included studies was assessed using the Newcastle Ottawa Quality Assessment Scale (NOS). Statistical analyses were performed using STATA software, and subgroup analyses were conducted by race, sample size, and age to assess the consistency of LMR's prognostic value across different population groups.

RESULTS

In this meta-analysis, eight studies were included for OS (1,997 patients) and five studies were included for DFS (1,590 patients). LMR was significantly associated with OS (HR 2.29; 95% CI [1.50-3.51];  = 0.0014), DFS (HR 4.00; 95% CI [1.76-9.07];  = 0.0094), and CSS (HR, 1.58; 95% CI [1.11-2.25];  = 0.01). Subgroup analysis indicated that the prognostic value of LMR for OS was consistent across different races, age groups, and sample sizes. However, the correlation between LMR and DFS was influenced by median age, with younger patients (<60 years) showing a stronger association. Sensitivity analyses confirmed the robustness of these results, and Egger's test showed no significant publication bias.

DISCUSSION

LMR serves as a valuable prognostic marker for OS, DFS, and CSS in EC patients. Its predictive power remains significant across diverse population groups, underscoring its potential utility in clinical practice. Biological mechanisms linking inflammation and cancer support the role of LMR in prognosis, given the functions of lymphocytes and monocytes in tumor progression and immune response. These findings suggest that incorporating LMR into current prognostic models could enhance risk stratification for EC patients, particularly for identifying those at higher risk of recurrence despite being classified as low risk by traditional systems. In conclusion, LMR is a robust, independent prognostic factor for EC, with significant implications for improving patient management and outcomes through better risk stratification.

摘要

背景

评估子宫内膜癌(EC)诊断时的转移风险以及未来复发的可能性对于有效管理该疾病至关重要。虽然传统的预后指标很重要,但它们在预测复发方面往往不足,尤其是在低风险患者中。本研究评估淋巴细胞与单核细胞比值(LMR)对EC患者总生存期(OS)、无病生存期(DFS)和癌症特异性生存期(CSS)的预后价值。

方法

本荟萃分析纳入了提供LMR预处理临界值、风险比(HRs)以及OS、DFS、CSS和无进展生存期(PFS)的95%置信区间(CIs)的合格研究。两名独立的审阅者收集并评估数据,并使用纽卡斯尔渥太华质量评估量表(NOS)评估纳入研究的质量。使用STATA软件进行统计分析,并按种族、样本量和年龄进行亚组分析,以评估LMR在不同人群中的预后价值的一致性。

结果

在本荟萃分析中,纳入了八项关于OS的研究(1997例患者)和五项关于DFS的研究(1590例患者)。LMR与OS(HR 2.29;95% CI [1.50 - 3.51];P = 0.0014)、DFS(HR 4.00;95% CI [1.76 - 9.07];P = 0.0094)和CSS(HR 1.58;95% CI [1.11 - 2.25];P = 0.01)显著相关。亚组分析表明,LMR对OS的预后价值在不同种族、年龄组和样本量中是一致的。然而,LMR与DFS之间的相关性受年龄中位数影响,年轻患者(<60岁)显示出更强的关联。敏感性分析证实了这些结果的稳健性,Egger检验显示无显著的发表偏倚。

讨论

LMR是EC患者OS、DFS和CSS的有价值的预后标志物。其预测能力在不同人群中仍然显著,强调了其在临床实践中的潜在效用。鉴于淋巴细胞和单核细胞在肿瘤进展和免疫反应中的功能,将炎症与癌症联系起来的生物学机制支持了LMR在预后中的作用。这些发现表明,将LMR纳入当前的预后模型可以增强EC患者的风险分层,特别是用于识别那些尽管被传统系统归类为低风险但复发风险较高的患者。总之,LMR是EC的一个强大、独立的预后因素,对于通过更好的风险分层改善患者管理和预后具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c63d/12199738/f1c9ef2cba41/peerj-13-19345-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验