Löw Nadine, Schneider Coralie, Zegota Maksymilian Marek, Grabarek Adam, Corradini Eleonora, Schuster Georg, Roskamp Meike Maria, Guth Felicitas, Hawe Andrea, Kellermeier Matthias
Pharma Solutions, BASF SE, G-ENP/MD - H201, Carl-Bosch-Strasse 38, D-67056 Ludwigshafen, Germany.
Material Science, BASF SE, RGS/BP - B007, Carl-Bosch-Strasse 38, D-67056 Ludwigshafen, Germany.
Mol Pharm. 2025 Aug 4;22(8):4890-4908. doi: 10.1021/acs.molpharmaceut.5c00519. Epub 2025 Jun 27.
Stabilization of therapeutic protein formulations with nonionic surfactants such as Polysorbate 20 (PS20), Polysorbate 80 (PS80), or Poloxamer 188 (P188) is imperative to avoid critical loss of the active pharmaceutical ingredient by aggregation or adsorption onto different types of interfaces. In the present work, we have characterized the interfacial activity of the aforementioned surfactants, alone and in competition with antibodies, in comparison to two other excipients with approval for use in parenteral applications, Kolliphor HS 15 (HS15) and Kolliphor ELP (ELP). To this end, we applied a comprehensive suite of experimental techniques, including tensiometry, interfacial rheology, and quartz-crystal microbalance with dissipation monitoring (QCM-D). The obtained data shows important differences between the surfactants as well as a clear influence of the type of interface considered on the observed behavior. In order to link these physicochemical results to the performance of the chosen surfactants in the stabilization of antibodies, we performed another series of tests to quantify protein aggregation (i.e., the formation of (sub)visible particles in formulations under stress) as well as the release of oil from siliconized vials. In addition, the stability of the surfactants against enzymatic degradation was investigated. It is demonstrated that HS15 can compete with the widely used polysorbates in terms of interfacial activity and protein stabilization, while offering higher robustness against degradation by a lipase and an esterase. On the other hand, P188 shows poor interfacial activity but can still suppress the aggregation of at least some proteins, indicating that different mechanisms of stabilization are at play. Our findings and the broad spectrum of tests described in this work are instructive toward a better understanding of protein stabilization in distinct primary packaging systems through surfactants in aqueous formulations.
使用非离子表面活性剂(如聚山梨酯20(PS20)、聚山梨酯80(PS80)或泊洛沙姆188(P188))来稳定治疗性蛋白质制剂,对于避免活性药物成分因聚集或吸附到不同类型的界面上而严重损失至关重要。在本研究中,我们表征了上述表面活性剂单独以及与抗体竞争时的界面活性,并与另外两种已批准用于肠胃外应用的辅料聚氧乙烯氢化蓖麻油15(HS15)和聚氧乙烯蓖麻油ELP(ELP)进行了比较。为此,我们应用了一系列综合实验技术,包括张力测定法、界面流变学以及带有耗散监测的石英晶体微天平(QCM-D)。所获得的数据显示了表面活性剂之间的重要差异,以及所考虑的界面类型对观察到的行为有明显影响。为了将这些物理化学结果与所选表面活性剂在稳定抗体方面的性能联系起来,我们进行了另一系列测试,以量化蛋白质聚集(即在应激条件下制剂中(亚)可见颗粒的形成)以及硅化小瓶中油的释放。此外,还研究了表面活性剂对酶促降解的稳定性。结果表明,HS15在界面活性和蛋白质稳定方面可以与广泛使用的聚山梨酯相竞争,同时对脂肪酶和酯酶的降解具有更高的耐受性。另一方面,P188显示出较差的界面活性,但仍能抑制至少一些蛋白质的聚集,这表明存在不同的稳定机制。我们的研究结果以及本工作中描述的广泛测试,有助于更好地理解水性制剂中的表面活性剂在不同初级包装系统中对蛋白质的稳定作用。