Darie Costel C, Hukovic Angiolina, Maynard Veronica D, Neagu Anca-Narcisa
Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, USA.
Laboratory of Animal Histology, Faculty of Biology, "Alexandru Ioan Cuza" University of Ia.i, Iasi, Romania.
Med Gas Res. 2026 Mar 1;16(1):41-45. doi: 10.4103/mgr.MEDGASRES-D-25-00023. Epub 2025 Jun 28.
Breast cancer is the most commonly diagnosed cancer and the second leading cause of cancer death among women worldwide. Poor prognosis in breast cancer patients is often linked to the presence of intratumoral hypoxic areas caused by abnormal vascularization and insufficient oxygen availability, which results in energetic crisis in cancer cells; metabolic and epigenetic reprogramming; the transcription of genes involved in angiogenesis; cancer cell proliferation; increased motility, aggressiveness and metastasis; the accumulation of mutations; genomic instability; the maintenance of stem cell characteristics; stromal cell recruitment; extracellular matrix remodeling; chronic inflammation; immune evasion; and adaptive responses in the tumoral microbiota. Furthermore, hypoxia is often correlated with resistance to traditional antitumor treatments used alone or in combination, which results in the need to implement novel therapies to overcome or alleviate the negative effects of oxygen deprivation in breast cancer theranostics. In breast cancer modeling research, micro- and nanofabrication-based technologies, including breast cancer-on-chip and breast cancer metastasis-on-chip platforms, are able to recapitulate the metastatic cascade of breast cancer in different controlled oxygen gradients. Mass spectrometry-based proteomics, including mass spectrometry imaging, offers opportunities for detecting, quantifying and understanding the roles of proteins and peptides, protein-protein interaction networks, and posttranslational modifications of proteins involved in hypoxia-associated biopathological processes. In this mini-review, we have summarized several modern approaches that are able to overcome the undesirable effects of hypoxia for breast cancer treatment. Thus, natural compounds with inhibitory effects on hypoxia-related signaling pathways in breast cancer cells and the tumor microenvironment, hyperbaric oxygen therapy, viral vector-based therapy that uses genetically engineered oncolytic viruses, and oncological bacteriotherapy based on biohybrid platforms, including anaerobic bacteria that are able to colonize inaccessible hypoxic regions in breast tumors to deliver chemotherapeutic drugs just into the tumor site, and smart nanoplatforms for abundant O2 generation within hypoxic breast cancer areas, including erythrocyte-like nanoparticles, metal-organic framework-nanoparticles, or engineered microalgae-metal-organic framework oxygenators, have been designed to relieve tumor hypoxia, induce antitumor responses, and improve the effects of traditional anti-breast cancer therapies.
乳腺癌是全球女性中最常被诊断出的癌症,也是癌症死亡的第二大主要原因。乳腺癌患者预后不良通常与肿瘤内缺氧区域的存在有关,这些区域是由异常血管生成和氧气供应不足引起的,这会导致癌细胞出现能量危机;代谢和表观遗传重编程;参与血管生成的基因转录;癌细胞增殖;运动性、侵袭性和转移增加;突变积累;基因组不稳定;干细胞特征的维持;基质细胞募集;细胞外基质重塑;慢性炎症;免疫逃逸;以及肿瘤微生物群中的适应性反应。此外,缺氧通常与单独或联合使用的传统抗肿瘤治疗的耐药性相关,这就需要实施新的疗法来克服或减轻乳腺癌诊疗中缺氧的负面影响。在乳腺癌建模研究中,基于微纳制造的技术,包括乳腺癌芯片和乳腺癌转移芯片平台,能够在不同的可控氧梯度下重现乳腺癌的转移级联过程。基于质谱的蛋白质组学,包括质谱成像,为检测、定量和理解参与缺氧相关生物病理过程的蛋白质和肽、蛋白质 - 蛋白质相互作用网络以及蛋白质的翻译后修饰的作用提供了机会。在本综述中,我们总结了几种能够克服缺氧对乳腺癌治疗不良影响的现代方法。因此,对乳腺癌细胞和肿瘤微环境中缺氧相关信号通路具有抑制作用的天然化合物、高压氧疗法、使用基因工程溶瘤病毒的基于病毒载体的疗法,以及基于生物杂交平台的肿瘤细菌疗法(包括能够定殖于乳腺肿瘤难以到达的缺氧区域以将化疗药物直接递送至肿瘤部位的厌氧细菌),还有用于在缺氧乳腺癌区域大量产生氧气的智能纳米平台(包括类红细胞纳米颗粒、金属 - 有机框架纳米颗粒或工程化微藻 - 金属 - 有机框架氧合器),已被设计用于缓解肿瘤缺氧、诱导抗肿瘤反应并提高传统抗乳腺癌疗法的效果。
Med Gas Res. 2026-3-1
Cochrane Database Syst Rev. 2018-2-6
Health Technol Assess. 2006-9
Psychopharmacol Bull. 2024-7-8
Arch Ital Urol Androl. 2025-6-30
2025-1
Health Technol Assess. 2025-7-2
Cochrane Database Syst Rev. 2014-6-12
Exploration (Beijing). 2024-3-24
Acta Biomater. 2025-1-24
Front Cell Dev Biol. 2024-8-30
J Colloid Interface Sci. 2024-12
ACS Appl Mater Interfaces. 2024-7-10