Maurya Neha, Sable Harsh, Chauhan Jyoti, Kumar Amit, Agrawal Sharad
Department of Life Science, Sharda School of Bioscience and Technology, Sharda University, Greater Noida, Uttar Pradesh 201310, India.
Department of Forensic Science, Sharda School of Allied Sciences, Sharda University, India.
Enzyme Microb Technol. 2025 Jun 25;190:110697. doi: 10.1016/j.enzmictec.2025.110697.
Xylanase and cellulase have become increasingly significant due to their versatile applications in the food, paper, biofuel, and pharmaceutical industries. Nevertheless, the current production of these enzymes relies on costly substrates, with estimates indicating that over 30 % of the production expenses are attributed to these substrates. The objective of this study is to optimize the physicochemical parameters for obtaining the maximum production of xylanase & cellulase enzyme from Pantoea sp. (PQ584882). The production conditions were statistically optimized using Plackett-Burman design (PBD) and Central Composite design (CCD). The significant variables identified through PB design including temperature, substrate-to-moisture ratio, KHPO, peptone, surfactant, inoculum size, inoculum age, incubation time, and pH were further optimized using the CCD approach. This optimization process revealed the most influential factors affecting xylanase & cellulase production, with optimal conditions observed at a temperature of 40◦C, Moisture Proportion, 15 mL; KHPO 6 mM; peptone, 1.55 %; Castor oil 0.5 %; inoculum size, 1.55 % (v/w); inoculum age, 18 h; an incubation time, 87 h. The optimized CCD model displayed a 1.84-fold greater xylanase & cellulose production than the PB design approach. These findings suggest that wheat bran, a readily available agro-waste, could be a feasible alternative to the conventional substrate, beechwood xylan and CMC (Carboxy methyl cellulose) for the production of xylanase & cellulase enzymes with the possibility of achieving higher production levels optimized by using a statistical design approach.
木聚糖酶和纤维素酶因其在食品、造纸、生物燃料和制药行业的广泛应用而变得越来越重要。然而,目前这些酶的生产依赖于昂贵的底物,据估计,超过30%的生产成本归因于这些底物。本研究的目的是优化物理化学参数,以从泛菌属(PQ584882)中获得最大产量的木聚糖酶和纤维素酶。使用Plackett-Burman设计(PBD)和中心复合设计(CCD)对生产条件进行了统计优化。通过PB设计确定的显著变量,包括温度、底物与水分比、KHPO、蛋白胨、表面活性剂、接种量、接种龄、培养时间和pH值,使用CCD方法进一步优化。该优化过程揭示了影响木聚糖酶和纤维素酶生产的最具影响力的因素,在温度40℃、水分比例15mL、KHPO 6mM、蛋白胨1.55%、蓖麻油0.5%、接种量1.55%(v/w)、接种龄18小时、培养时间87小时的条件下观察到最佳条件。优化后的CCD模型显示木聚糖酶和纤维素的产量比PB设计方法高1.84倍。这些发现表明,麦麸作为一种 readily available agro-waste,可能是传统底物、山毛榉木聚糖和羧甲基纤维素(CMC)的可行替代品,用于生产木聚糖酶和纤维素酶,并且有可能通过使用统计设计方法实现更高的产量优化。