Huo Xintong, Xie Yunrui, Hu Yaolin, Wang Zheng, Sheng Yuqi, Qi Haina, Shao Hong, Ma Qianli, Yu Wensheng, Dong Xiangting
College of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China.
Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, China.
J Colloid Interface Sci. 2025 Dec;699(Pt 2):138276. doi: 10.1016/j.jcis.2025.138276. Epub 2025 Jun 23.
In order to attain white light or multicolor luminescence of perovskite quantum dots (PQDs) materials, the prevalent method involves directly blending PQDs with different type and composition of halogen anions. However, this method allows uncontrolled halogen anion exchange between the different PQDs, thereby leading to alterations in the final fluorescence color of the material. To address this problem, we creatively design and fabricate a PQDs-based Janus microribbons film (Janus-MRF) with white light emission and multicolor fluorescence under multi-wavelength stimulation by a parallel electrospinning. [CsPbClBr/Eu(BA)phen/PS]//[CsPbBr/Eu(BA)phen/PS] (BA = benzoate radical, phen = 1,10-phenanthroline, PS = polystyrene) Janus microribbon (Janus-MR) serves as fundamental structural unit of Janus-MRF, CsPbClBr and CsPbBr PQDs respectively provide blue and green fluorescence, and Eu(BA)phen offers red fluorescence. The introduction of Janus structure in Janus-MR allows the interior of the Janus-MR to form two independent microscopic domains, confining CsPbClBr PQDs and CsPbBr PQDs to their respective domains and avoiding halogen anion exchange caused by direct contact between the two PQDs and obtaining superior and designed macroscopic fluorescence. Owing to the disparity in optimal excitation wavelengths between PQDs and Eu(BA)phen, white light and multicolor emissions of Janus-MRF can be achieved under multi-wavelength stimulation. Furthermore, the fluorescent color of Janus-MRF is sensitive to temperature changes. As an applicative demonstration of Janus-MRF, different sub-barcodes are obtained by using the identifiable fluorescence spectra emitted by Janus-MRF under multi-wavelength stimulation and the sensitivity of fluorescent color of Janus-MRF to temperature changes, and further these sub-barcodes are integrated into the large photonic barcodes encoding library for high-volume data storage and advanced anti-counterfeiting applications. This work provides a novel idea and strategy for advancing fabrication and application of materials based on PQDs.
为了实现钙钛矿量子点(PQDs)材料的白光或多色发光,普遍的方法是将PQDs与不同类型和组成的卤素阴离子直接混合。然而,这种方法会导致不同PQDs之间不受控制的卤素阴离子交换,从而导致材料最终荧光颜色的改变。为了解决这个问题,我们通过平行静电纺丝创造性地设计并制备了一种基于PQDs的具有白光发射和多色荧光的双面微带薄膜(Janus-MRF)。[CsPbClBr/Eu(BA)phen/PS]//[CsPbBr/Eu(BA)phen/PS](BA = 苯甲酸根,phen = 1,10-菲咯啉,PS = 聚苯乙烯)双面微带(Janus-MR)作为Janus-MRF的基本结构单元,CsPbClBr和CsPbBr PQDs分别提供蓝色和绿色荧光,而Eu(BA)phen提供红色荧光。Janus-MR中双面结构的引入使得Janus-MR内部形成两个独立的微观区域,将CsPbClBr PQDs和CsPbBr PQDs限制在各自的区域内,避免了两种PQDs直接接触导致的卤素阴离子交换,并获得了优异的、设计好的宏观荧光。由于PQDs和Eu(BA)phen之间最佳激发波长的差异,Janus-MRF在多波长刺激下可以实现白光和多色发射。此外,Janus-MRF的荧光颜色对温度变化敏感。作为Janus-MRF的应用演示,利用Janus-MRF在多波长刺激下发射的可识别荧光光谱以及Janus-MRF荧光颜色对温度变化的敏感性,获得了不同的子条形码,并进一步将这些子条形码集成到大型光子条形码编码库中,用于大容量数据存储和先进的防伪应用。这项工作为推进基于PQDs的材料的制备和应用提供了新的思路和策略。