Suppr超能文献

粪便微生物群落分析有助于区分儿童克罗恩病和溃疡性结肠炎的表型及治疗反应——一项国际荟萃分析

Fecal Microbial Community Profiling Allows Discrimination of Phenotype and Treatment Response in Pediatric Crohn's Disease and Ulcerative Colitis-An International Meta-Analysis.

作者信息

Aldrian Denise, Pollio Adam, Mayerhofer Christoph, Diederen Kay, Jacobs Jonathan P, Pai Nikhil, Szamosi Jake C, Hart Lara, Turner Dan, Del Chierico Federica, Cardile Sabrina, Grigoryan Zoya, Chen Lea Ann, Hurych Jakub, Cinek Ondrej, Taddei Carla R, Schwerd Tobias, Wine Eytan, Griffiths Anne M, Müller Thomas, Vogel Georg F

机构信息

Department of Paediatrics I, Medical University of Innsbruck, Innsbruck, Austria.

Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria.

出版信息

Inflamm Bowel Dis. 2025 Jun 28. doi: 10.1093/ibd/izaf135.

Abstract

BACKGROUND AND AIMS

The pathophysiology of pediatric inflammatory bowel disease (PIBD), encompassing Crohn's disease (CD) and ulcerative colitis (UC), is not entirely understood. Dysregulation of the intestinal microbiome is recognized as both a disease-driving and a potential therapeutic target. This study aimed to systematically analyze gut microbiome compositions and its applicability as a biomarker for disease progress and treatment response.

METHODS

Bibliographic and nucleotide databases were searched. Raw 16S-rRNA sequencing reads were subjected to a uniform downstream dada2/phyloseq pipeline to extract taxonomy, community structure, and abundance information. Patient metadata were extracted from publications, and study authors were contacted for further details if required.

RESULTS

Twenty-six studies comprising 3956 stool samples (CD 41%, UC 36%, 23% healthy) were included in the analyses. Median age of individuals was 12 (interquartile range 4). Sex distribution was comparable. Alpha diversity was reduced between the healthy and both UC and CD treatment-naïve groups (P < .001) and further reduced with increasing clinical disease activity. Beta diversity revealed altered community structure in treatment-naïve children with PIBD (P < .001). This alteration remained in patients in clinical remission (P < .001). Machine learning models discriminated between treatment-naïve patients with CD or UC with an area under the receiver operating characteristics curve (AUROC) of 98%. Microbial communities differed between patient responders versus nonresponders to treatment (P < .001). Further, microbial community profiling distinguished treatment response (eg, steroid, nutrition, or TNFα) with AUROCs of 82%-90%.

CONCLUSIONS

Gut microbial community structure is substantially altered in active and inactive PIBD and may be utilized as a biomarker for differentiating PIBD subtype and predicting treatment response.

摘要

背景与目的

儿童炎症性肠病(PIBD)包括克罗恩病(CD)和溃疡性结肠炎(UC),其病理生理学尚未完全明确。肠道微生物群失调被认为既是疾病驱动因素,也是潜在的治疗靶点。本研究旨在系统分析肠道微生物群组成及其作为疾病进展和治疗反应生物标志物的适用性。

方法

检索文献和核苷酸数据库。对原始16S - rRNA测序读数采用统一的下游dada2/phyloseq流程,以提取分类学、群落结构和丰度信息。从出版物中提取患者元数据,如有需要,联系研究作者获取更多详细信息。

结果

分析纳入了26项研究,共3956份粪便样本(CD占41%,UC占36%,健康对照占23%)。个体的中位年龄为12岁(四分位间距为4)。性别分布具有可比性。健康组与未经治疗的UC和CD组之间的α多样性均降低(P < 0.001),且随着临床疾病活动度增加进一步降低。β多样性显示未经治疗的PIBD儿童群落结构改变(P < 0.001)。这种改变在临床缓解的患者中依然存在(P < 0.001)。机器学习模型区分未经治疗的CD或UC患者的受试者操作特征曲线下面积(AUROC)为98%。患者对治疗有反应者与无反应者的微生物群落存在差异(P < 0.001)。此外,微生物群落分析可区分治疗反应(如类固醇、营养或TNFα),AUROC为82% - 90%。

结论

在活动期和非活动期PIBD中,肠道微生物群落结构发生显著改变,可作为区分PIBD亚型和预测治疗反应的生物标志物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验