Ye Ruoxuan, Firdous Irum, Fahim Muhammad, Shi Jihong, Li Weilu, Bo Xiangkun, Lui Fei, Daoud Walid A
Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China.
Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518000, China.
Adv Sci (Weinh). 2025 Sep;12(35):e04608. doi: 10.1002/advs.202504608. Epub 2025 Jun 30.
The growing demand for sustainable energy has triggered the exploration of innovative solutions to harness clean and renewable sources. In this pursuit, harvesting rain energy has emerged as a promising approach due to its unlimited availability. However, traditional droplet-based harvesters face several challenges, including a long charging period, low electrical power output, and fast charge dissipation. This study presents an innovative ionogel-based rain energy harvester that overcomes these limitations. The key advancement lies in the stable polarized interface created by the ionogel, which enables rapid charging and high charge retention, leading to a significant instantaneous power within the first few raindrops and achieving an 8-fold increase in saturation performance over conventional design. The harvester only requires 25 droplets to reach saturation and maximum electrical output, achieving an impressive power density of 235.11 W m and a conversion efficiency of 6.77%, being the highest recorded for ionogel and hydrogel-based droplet energy harvesters. Additionally, the adhesive nature of the ionogel enhances the device's stability and versatility in varying energy generation and steam leakage applications. This work advances the pursuit of sustainable energy harvesting by bridging materials science with practical application.
对可持续能源日益增长的需求引发了对利用清洁和可再生能源的创新解决方案的探索。在这一追求中,由于雨水能量的无限可用性,收集雨水能量已成为一种有前景的方法。然而,传统的基于液滴的收集器面临着几个挑战,包括充电时间长、电能输出低和电荷快速消散。本研究提出了一种创新的基于离子凝胶的雨水能量收集器,克服了这些限制。关键进展在于离子凝胶形成的稳定极化界面,它能够实现快速充电和高电荷保持,在最初几滴雨滴内产生显著的瞬时功率,并使饱和性能比传统设计提高8倍。该收集器仅需25滴雨滴就能达到饱和并实现最大电输出,实现了令人印象深刻的235.11 W/m的功率密度和6.77%的转换效率,是基于离子凝胶和水凝胶的液滴能量收集器所记录的最高值。此外,离子凝胶的粘性增强了该装置在不同能量产生和蒸汽泄漏应用中的稳定性和通用性。这项工作通过将材料科学与实际应用相结合,推动了对可持续能源收集的追求。