Suppr超能文献

使用人工智能的腹腔镜腹股沟疝修补术的地标显示系统

Landmark display system for laparoscopic inguinal hernia repair using artificial intelligence.

作者信息

Sato Keita, Ishikawa Yuto

机构信息

Department of Surgery, Ise Red Cross Hospital, 1-471-2 Funae, Ise City, Mie, Japan.

Department for the Promotion of Medical Device Innovation, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan.

出版信息

Surg Endosc. 2025 Aug;39(8):4985-4990. doi: 10.1007/s00464-025-11933-9. Epub 2025 Jun 30.

Abstract

BACKGROUND

Chronic postoperative inguinal pain (CPIP) is a major complication of inguinal hernia repair and significantly affects patients' quality of life. Despite the widespread use of transabdominal preperitoneal repair (TAPP), CPIP still occurs. In TAPP, nerves are not directly exposed, and surgeons avoid complications by identifying the trapezoid of disaster (ToD) using anatomical landmarks. This study evaluates an AI-based system that displays these landmarks on intraoperative endoscopic images.

METHODS

We analyzed 62 randomly selected TAPP cases (73 hernias) from 188 procedures (222 hernias) performed at our institution. A total of 3323 images of the myopectineal orifice were labeled for training. We developed a Feature Pyramid Network (FPN) segmentation model using EfficientNetB7. The model was tested on 10 new cases to identify three key landmarks: vas deferens, gonadal vessels, and inferior epigastric vessels. Expert surgeons validated the prototype system.

RESULTS

Postoperative pain was observed in 5.4% (12 cases) for Numerical rating scale (NRS) ≥ 1 and 2.2% (5 cases) for CPIP (NRS ≥ 3). The model achieved Dice coefficients of 0.67 (vas deferens), 0.68 (gonadal vessels) and 0.70 (inferior epigastric vessels). Anatomical landmarks were successfully displayed on surgical images. Expert evaluation confirmed correct recognition in 90% of cases.

CONCLUSIONS

The AI model accurately identified key anatomical landmarks in TAPP and demonstrated anatomical validity. Surgical safety may be improved by avoiding nerve damage through visualization of key structures.

摘要

背景

慢性术后腹股沟疼痛(CPIP)是腹股沟疝修补术的主要并发症,严重影响患者的生活质量。尽管经腹腹膜前修补术(TAPP)已广泛应用,但CPIP仍会发生。在TAPP手术中,神经不会直接暴露,外科医生通过利用解剖标志识别“灾难三角(ToD)”来避免并发症。本研究评估了一种基于人工智能的系统,该系统可在术中内镜图像上显示这些标志。

方法

我们分析了从本机构进行的188例手术(222例疝修补)中随机选取的62例TAPP病例(73例疝)。总共标记了3323张耻骨肌孔图像用于训练。我们使用EfficientNetB7开发了一个特征金字塔网络(FPN)分割模型。该模型在10例新病例上进行测试,以识别三个关键标志:输精管、生殖血管和腹壁下血管。专家外科医生对该原型系统进行了验证。

结果

数字评分量表(NRS)≥1时,术后疼痛发生率为5.4%(12例);CPIP(NRS≥3)时,术后疼痛发生率为2.2%(5例)。该模型对输精管、生殖血管和腹壁下血管的骰子系数分别为0.67、0.68和0.70。解剖标志成功显示在手术图像上。专家评估确认90%的病例识别正确。

结论

人工智能模型在TAPP中准确识别了关键解剖标志,并证明了其解剖学有效性。通过可视化关键结构避免神经损伤,可能会提高手术安全性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验