Suppr超能文献

使用深度学习集成模型增强对重症溃疡性结肠炎中巨细胞病毒感染的预测:开发与验证研究

Enhancing the Predictions of Cytomegalovirus Infection in Severe Ulcerative Colitis Using a Deep Learning Ensemble Model: Development and Validation Study.

作者信息

Kim Jeong Heon, Choe A Reum, Byeon Ju Ran, Park Yehyun, Song Eun Mi, Kim Seong-Eun, Jeong Eui Sun, Lee Rena, Kim Jin Sung, Ahn So Hyun, Jung Sung Ae

机构信息

Department of Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.

Department of Internal Medicine, College of Medicine, Ewha Womans University Mokdong Hospital, Ewha Womans University College of Medicine, Seoul, South Korea, Seoul, Republic of Korea.

出版信息

JMIR Med Inform. 2025 Jul 1;13:e64987. doi: 10.2196/64987.

Abstract

BACKGROUND

Cytomegalovirus (CMV) reactivation in patients with severe ulcerative colitis (UC) leads to worse outcomes; yet, early detection remains challenging due to the reliance on time-intensive biopsy procedures.

OBJECTIVE

This study explores the use of deep learning to differentiate CMV from severe UC through endoscopic imaging, offering a potential noninvasive diagnostic tool.

METHODS

We analyzed 86 endoscopic images using an ensemble of deep learning models, including DenseNet (Densely Connected Convolutional Network) 121 pretrained on ImageNet. Advanced preprocessing and test-time augmentation (TTA) were applied to optimize model performance. The models were evaluated using metrics such as accuracy, precision, recall, F1-score, and area under the curve.

RESULTS

The ensemble approach, enhanced by TTA, achieved high performance, with an accuracy of 0.836, precision of 0.850, recall of 0.904, and an F1-score of 0.875. Models without TTA showed a significant drop in these metrics, emphasizing TTA's importance in improving classification performance.

CONCLUSIONS

This study demonstrates that deep learning models can effectively distinguish CMV from severe UC in endoscopic images, paving the way for early, noninvasive diagnosis and improved patient care.

摘要

背景

重症溃疡性结肠炎(UC)患者的巨细胞病毒(CMV)再激活会导致更差的预后;然而,由于依赖耗时的活检程序,早期检测仍然具有挑战性。

目的

本研究探索利用深度学习通过内镜成像将CMV与重症UC区分开来,提供一种潜在的非侵入性诊断工具。

方法

我们使用深度学习模型集成分析了86张内镜图像,包括在ImageNet上预训练的DenseNet(密集连接卷积网络)121。应用先进的预处理和测试时增强(TTA)来优化模型性能。使用准确率、精确率、召回率、F1分数和曲线下面积等指标对模型进行评估。

结果

通过TTA增强的集成方法取得了高性能,准确率为0.836,精确率为0.850,召回率为0.904,F1分数为0.875。没有TTA的模型在这些指标上显著下降,强调了TTA在提高分类性能方面的重要性。

结论

本研究表明,深度学习模型可以在内镜图像中有效区分CMV与重症UC,为早期非侵入性诊断和改善患者护理铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8756/12236115/6c7a2b284946/medinform-v13-e64987-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验