Singh Ankush Kumar, Yadav Rashmi
Department of Chemistry, IIT(BHU), Varanasi 221005, India.
ACS Appl Mater Interfaces. 2025 Jul 16;17(28):40409-40421. doi: 10.1021/acsami.5c06489. Epub 2025 Jul 1.
The commercialization of lithium metal as an anode is challenged by its poor electrochemical reversibility and short cycle life. Both issues stem from the fragile solid electrolyte interphase (SEI) and dendritic growth during continuous stripping-plating cycles. Here, we report ZnO-decorated polypropylene separators as a bifunctional tool to suppress or mitigate dendritic proliferation. The ZnO-coated separators, prepared via a binder-free strategy, delivers two benefits. First, the formation of a Zn-rich in situ artificial SEI is expected due to the spontaneous reduction of ZnO on the lithium surface. Second, the lithiophilic ZnO will provide a uniform ion flux to counter Li depletion/nonuniform Li distribution near the anode surface. The modified separators were explicitly characterized to support the role of these benefits. The ZnO-coated separators exhibited improved wettability, higher electrolyte uptake percentage, improved ionic conductivity, larger transference number, and higher exchange current density. During electrochemical characterization, a substantially lower nucleation overpotential of 70 mV, superior cycle life of more than 500 cycles at a current density of 1 mA/cm in aggressive carbonate solvents, and better reversibility at elevated current densities up to 5 mA/cm were demonstrated by ZnO modified separators. With comprehensive electrochemical and postcycling characterization, it is shown that ZnO-coated separators are potentially promising for mitigating dendritic growth and improving interfacial instability, as observed from the HR-SEM and EDS analysis. The in situ formation of Zn and LiZn SEI was confirmed from the postcycling XRD and XPS analysis of the metallic anode. Ascribed to the synergistic effect of lithiophilicity and in situ formation of anion-dominant, inorganic-rich SEI, the proposed strategy enabled stable lithium metal deposition-stripping behavior and can further be applied for anode-free batteries.
锂金属作为阳极的商业化面临着电化学可逆性差和循环寿命短的挑战。这两个问题都源于在连续的剥离-电镀循环过程中脆弱的固体电解质界面(SEI)和枝晶生长。在此,我们报道了氧化锌修饰的聚丙烯隔膜作为一种双功能工具,用于抑制或减轻枝晶增殖。通过无粘结剂策略制备的氧化锌涂层隔膜有两个优点。首先,由于锂表面氧化锌的自发还原,预计会形成富含锌的原位人工SEI。其次,亲锂的氧化锌将提供均匀的离子通量,以应对阳极表面附近的锂耗尽/锂分布不均匀问题。对改性隔膜进行了明确表征,以支持这些优点所起的作用。氧化锌涂层隔膜表现出改善的润湿性、更高的电解液吸收百分比、改善的离子导电性、更大的迁移数和更高的交换电流密度。在电化学表征过程中,氧化锌改性隔膜显示出显著更低的70 mV成核过电位、在1 mA/cm²的电流密度下于腐蚀性碳酸盐溶剂中超过500次循环的优异循环寿命,以及在高达5 mA/cm²的升高电流密度下更好的可逆性。通过全面的电化学和循环后表征表明,从高分辨率扫描电子显微镜(HR-SEM)和能谱分析(EDS)观察到,氧化锌涂层隔膜在减轻枝晶生长和改善界面不稳定性方面具有潜在的应用前景。通过对金属阳极的循环后X射线衍射(XRD)和X射线光电子能谱(XPS)分析,证实了锌和锂锌SEI的原位形成。由于亲锂性和原位形成阴离子主导的、富含无机成分的SEI的协同效应,所提出的策略实现了稳定的锂金属沉积-剥离行为,并且可以进一步应用于无阳极电池。