Suppr超能文献

激光诱导击穿光谱结合机器学习用于快速定量大肠杆菌浓度。

Laser-induced breakdown spectroscopy coupled with machine learning for rapid quantification of Escherichia coli concentration.

作者信息

Wang Jingjing, Liang Jiahui, Chen Fei, Yu Runheng, Tian Zhihui, Zhao Yang, Ma Weiguang, Dong Lei, Li Jiaxuan, Yin Wangbao, Xiao Liantuan, Jia Suotang, Zhang Lei

机构信息

State Key Laboratory of Quantum Optics and Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, 030004, China; Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030004, China.

School of Physics and Electronic Information Engineering, Hubei Engieering University, Xiaogan, 432000, China.

出版信息

Talanta. 2026 Jan 1;296:128522. doi: 10.1016/j.talanta.2025.128522. Epub 2025 Jun 27.

Abstract

The rapid and accurate quantification of bacterial concentrations is essential for food safety monitoring, environmental surveillance, and clinical diagnostics. Traditional methods are often limited by lengthy procedures, complex operations, or high costs. This study developed a novel approach combing laser-induced breakdown spectroscopy (LIBS) with machine learning for rapid bacterial concentration analysis. Using Escherichia coli (E. coli) as a model organism, we systematically optimized key LIBS parameters including delay time, substrate material, and laser repetition rate to achieve optimal spectral quality. Three machine learning algorithms - support vector regression (SVR), gradient boosting regression (GBR), and kernel ridge regression (KRR) - were comparatively evaluated. The SVR model demonstrated superior performance with a coefficient of determination (R) of 0.99, along with root mean square error (RMSE) of 7.3 × 10 cells/mL and mean absolute error (MAE) of 4.2 × 10 cells/mL, respectively. Method validation showed recovery rates ranging from 100.03 % to 100.83 %, with relative standard deviations (RSD) less than 2 %. The t-test confirmed no significant difference between the spiked concentrations and the detected concentrations (p > 0.05), indicating that the method possesses excellent accuracy and precision. This multi-feature integration approach effectively addressed the nonlinear correlation between spectral line intensity and bacterial concentration in LIBS quantification. The method offers significant advantages including minimal sample preparation and rapid analysis speed. These findings establish a reliable and efficient technique for microbial quantification with promising applications in food production facilities, healthcare settings, and ecological studies.

摘要

快速准确地定量细菌浓度对于食品安全监测、环境监测和临床诊断至关重要。传统方法往往受到程序冗长、操作复杂或成本高昂的限制。本研究开发了一种将激光诱导击穿光谱法(LIBS)与机器学习相结合的新方法,用于快速细菌浓度分析。以大肠杆菌(E. coli)为模式生物,我们系统地优化了包括延迟时间、基底材料和激光重复频率在内的关键LIBS参数,以实现最佳光谱质量。对三种机器学习算法——支持向量回归(SVR)、梯度提升回归(GBR)和核岭回归(KRR)——进行了比较评估。SVR模型表现出卓越性能,决定系数(R)为0.99, 均方根误差(RMSE)分别为7.3×10个细胞/mL, 平均绝对误差(MAE)为4.2×10个细胞/mL。方法验证显示回收率在100.03%至100.83%之间,相对标准偏差(RSD)小于2%。t检验证实加标浓度与检测浓度之间无显著差异(p>0.05),表明该方法具有出色的准确度和精密度。这种多特征整合方法有效地解决了LIBS定量中谱线强度与细菌浓度之间的非线性相关性。该方法具有显著优势,包括样品制备最少和分析速度快。这些发现建立了一种可靠且高效的微生物定量技术,在食品生产设施、医疗环境和生态研究中具有广阔的应用前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验