Choi Jae-Won, Im Ji-Hye, Balakrishnan Rengasamy
Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States.
Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, South Korea.
Biomed Pharmacother. 2025 Aug;189:118299. doi: 10.1016/j.biopha.2025.118299. Epub 2025 Jun 30.
Microglia-mediated neuroinflammation plays a crucial role in memory and cognitive deficits and the development of early mild cognitive impairment (MCI) associated with Alzheimer's disease (AD). Paeoniflorin (PF) has been established as an effective antioxidant and anti-apoptotic agent. This study investigated the protective effects of PF on neuroinflammation, amyloidogenesis, and memory impairments in lipopolysaccharide (LPS)-stimulated BV-2 microglial cells and a C57BL/6 J amnesic mouse model. In BV-2 microglial cells, PF treatment inhibited LPS-stimulated nitric oxide (NO) production, attenuated microglial overactivation, and suppressed the excessive release of inflammatory mediators (iNOS and COX-2) in a concentration-dependent manner. More crucially, PF regulated the LPS-stimulated phosphorylation of mitogen-activated protein kinases (MAPKs)-including p38, ERK, and JNK-while also suppressing NF-κB nuclear transport and inhibiting IκB-α phosphorylation. In the in vivo study, PF (10 or 20 mg/kg) treatment significantly improved spatial learning memory and cognitive function and ameliorated memory deficits. Furthermore, PF administration upregulated BDNF, p-CREB, Nrf2, and HO-1 expression, which are biomarkers of neuroprotective and antioxidant effects. This was accompanied by a reduction in markers of neuroinflammation (iNOS and COX-2), the inhibition of microglia and astrocytes overactivation, and decreased expression of amyloidogenic protein markers APP and BACE-1 in the hippocampus and cerebral cortex. Further, PF inhibited the LPS-promoted phosphorylation of MAPK signaling, thereby reducing the phosphorylation level of IκB-α and inhibiting NF-κB activation in the hippocampus and cerebral cortex. Our results suggest that PF confers neuroprotective effects in an LPS model of Alzheimer-associated MCI by regulating the Nrf2/HO-1/BDNF/CREB and APP/BACE-1/NF-κB/MAPK signaling pathways.
小胶质细胞介导的神经炎症在记忆和认知缺陷以及与阿尔茨海默病(AD)相关的早期轻度认知障碍(MCI)的发展中起关键作用。芍药苷(PF)已被确认为一种有效的抗氧化剂和抗凋亡剂。本研究调查了PF对脂多糖(LPS)刺激的BV-2小胶质细胞和C57BL/6 J失忆小鼠模型中神经炎症、淀粉样蛋白生成和记忆障碍的保护作用。在BV-2小胶质细胞中,PF处理以浓度依赖的方式抑制LPS刺激的一氧化氮(NO)产生,减弱小胶质细胞过度激活,并抑制炎症介质(iNOS和COX-2)的过度释放。更关键的是,PF调节LPS刺激的丝裂原活化蛋白激酶(MAPK)的磷酸化,包括p38、ERK和JNK,同时还抑制NF-κB核转运并抑制IκB-α磷酸化。在体内研究中,PF(10或20 mg/kg)处理显著改善空间学习记忆和认知功能,并改善记忆缺陷。此外,PF给药上调了BDNF、p-CREB、Nrf2和HO-1的表达,这些是神经保护和抗氧化作用的生物标志物。这伴随着神经炎症标志物(iNOS和COX-2)的减少、小胶质细胞和星形胶质细胞过度激活的抑制以及海马体和大脑皮层中淀粉样蛋白生成蛋白标志物APP和BACE-1表达的降低。此外,PF抑制LPS促进的MAPK信号磷酸化,从而降低海马体和大脑皮层中IκB-α的磷酸化水平并抑制NF-κB激活。我们的结果表明,PF通过调节Nrf2/HO-1/BDNF/CREB和APP/BACE-1/NF-κB/MAPK信号通路,在与AD相关的MCI LPS模型中发挥神经保护作用。
Naunyn Schmiedebergs Arch Pharmacol. 2025-1-29