Lakhal Yassmin, Redolat Javier, Sánchez-González Estíbaliz, Constantino Paul J, Berthaume Michael A, Borrero-López Óscar, Pinilla-Cienfuegos Elena
Nanophotonics Technology Center, Universitat Politècnica de València, Valencia, Spain.
Departamento de Ingeniería Mecánica, Energética, Universidad de Extremadura, Badajoz, Spain.
J R Soc Interface. 2025 Jul;22(228):20250175. doi: 10.1098/rsif.2025.0175. Epub 2025 Jul 2.
Dental enamel is one of the strongest biomaterials found in nature, making its mechanical failure of significant interest to the biomaterials and dental communities. Recent studies on the mechanisms of enamel wear have yielded conflicting results, highlighting the need for more realistic experimental approaches. Here, we introduce a novel experimental methodology based on nanotechnology techniques and micromechanical/materials testing to simulate and characterize, for the first time, microwear caused by the sliding of artificial models of soft leaves containing phytolith particles against human dental enamel. While embedded phytoliths undergo mechanical degradation upon cyclic contacts, they increase the extent of pre-existing wear in enamel and decrease its mineral content. Surprisingly, the primary wear mechanism of enamel is 'quasi-plastic' (i.e. permanent) deformation enabled by failure of weak interphases, dominated at the microstructural scale. Mechanisms responsible for material removal in enamel at different length scales are identified and discussed. This research offers new insights into enamel failure that can further reveal information about an animal's biology, behaviour, biomechanics and ecology, offering an interdisciplinary approach to the interface between the physical and life sciences.
牙釉质是自然界中发现的最强生物材料之一,其机械失效引起了生物材料和牙科领域的极大兴趣。最近关于牙釉质磨损机制的研究得出了相互矛盾的结果,凸显了采用更现实实验方法的必要性。在此,我们引入一种基于纳米技术和微机械/材料测试的新型实验方法,首次模拟并表征含有植硅体颗粒的软叶人工模型与人类牙釉质滑动所引起的微磨损。虽然嵌入的植硅体在循环接触时会发生机械降解,但它们会增加牙釉质中已有磨损的程度并降低其矿物质含量。令人惊讶的是,牙釉质的主要磨损机制是由薄弱界面失效导致的“准塑性”(即永久性)变形,在微观结构尺度上占主导。确定并讨论了在不同长度尺度上导致牙釉质材料去除的机制。这项研究为牙釉质失效提供了新的见解,可进一步揭示有关动物生物学、行为、生物力学和生态学的信息,为物理科学与生命科学之间的界面提供了一种跨学科方法。