文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

磁性间苯二酚-甲醛负载三乙烯二胺作为一种高效且可循环使用的纳米催化剂。

Magnetic resorcinol-formaldehyde supported-DABCO as an effective and recyclable nanocatalyst.

作者信息

Abaeezadeh Somayeh, Elhamifar Dawood

机构信息

Department of Chemistry, Yasouj University, Yasouj, 75918-74831, Iran.

出版信息

Sci Rep. 2025 Jul 2;15(1):22847. doi: 10.1038/s41598-025-05537-5.


DOI:10.1038/s41598-025-05537-5
PMID:40593017
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12218961/
Abstract

In this study, a novel core-shell structured magnetic resorcinol-formaldehyde functionalized with 1,4-diazabicyclo[2.2.2]octane (FeO@RF/DABCO) has been synthesized, characterized, and its catalytic efficacy has been investigated in the Knoevenagel condensation. The FeO@RF/DABCO nanocomposite was characterized by using FT-IR, TGA, PXRD, EDX, EDX-mapping, VSM, TEM and SEM analyses. The catalytic study showed that the FeO@RF/DABCO nanocomposite has remarkable performance and selectivity in the Knoevenagel reaction under solvent-free media at room temperature. This nanocatalyst was efficiently recovered and reused several times with no noticeable loss of efficiency and stability.

摘要

在本研究中,合成了一种新型的核壳结构磁性间苯二酚-甲醛,其用1,4-二氮杂双环[2.2.2]辛烷(FeO@RF/DABCO)功能化,进行了表征,并在Knoevenagel缩合反应中研究了其催化效果。通过傅里叶变换红外光谱(FT-IR)、热重分析(TGA)、粉末X射线衍射(PXRD)、能量散射X射线光谱(EDX)、EDX映射、振动样品磁强计(VSM)、透射电子显微镜(TEM)和扫描电子显微镜(SEM)分析对FeO@RF/DABCO纳米复合材料进行了表征。催化研究表明,FeO@RF/DABCO纳米复合材料在室温无溶剂介质下的Knoevenagel反应中具有显著的性能和选择性。这种纳米催化剂能够有效地回收并重复使用多次,而效率和稳定性没有明显损失。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d04/12218961/56c37d23abc9/41598_2025_5537_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d04/12218961/feffc32f9adc/41598_2025_5537_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d04/12218961/3d443d937691/41598_2025_5537_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d04/12218961/95fb15a74e6f/41598_2025_5537_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d04/12218961/b9e9f8500ef7/41598_2025_5537_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d04/12218961/31fbbf181100/41598_2025_5537_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d04/12218961/11a81fd4e0f7/41598_2025_5537_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d04/12218961/90793fd15829/41598_2025_5537_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d04/12218961/77eaf0e8ebb9/41598_2025_5537_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d04/12218961/a0b0e529e1e7/41598_2025_5537_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d04/12218961/934268db34b7/41598_2025_5537_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d04/12218961/187ba0b5bd2c/41598_2025_5537_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d04/12218961/fc0525e409be/41598_2025_5537_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d04/12218961/885575436ba9/41598_2025_5537_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d04/12218961/b59d0a9ab643/41598_2025_5537_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d04/12218961/56c37d23abc9/41598_2025_5537_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d04/12218961/feffc32f9adc/41598_2025_5537_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d04/12218961/3d443d937691/41598_2025_5537_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d04/12218961/95fb15a74e6f/41598_2025_5537_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d04/12218961/b9e9f8500ef7/41598_2025_5537_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d04/12218961/31fbbf181100/41598_2025_5537_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d04/12218961/11a81fd4e0f7/41598_2025_5537_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d04/12218961/90793fd15829/41598_2025_5537_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d04/12218961/77eaf0e8ebb9/41598_2025_5537_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d04/12218961/a0b0e529e1e7/41598_2025_5537_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d04/12218961/934268db34b7/41598_2025_5537_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d04/12218961/187ba0b5bd2c/41598_2025_5537_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d04/12218961/fc0525e409be/41598_2025_5537_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d04/12218961/885575436ba9/41598_2025_5537_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d04/12218961/b59d0a9ab643/41598_2025_5537_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d04/12218961/56c37d23abc9/41598_2025_5537_Fig15_HTML.jpg

相似文献

[1]
Magnetic resorcinol-formaldehyde supported-DABCO as an effective and recyclable nanocatalyst.

Sci Rep. 2025-7-2

[2]
DABCO-modified magnetic core-shell as an efficient nanocatalyst for synthesizing polyhydroquinoline derivatives.

Front Chem. 2025-3-31

[3]
A melamine supported on TiO coated FeO@C nanocomposite as a bifunctional, effective and reusable catalyst for the Knoevenagel condensation reaction.

Nanoscale Adv. 2025-5-28

[4]
Amine functionalized magnetic resorcinol formaldehyde as a green and reusable nanocatalyst for the Knoevenagel condensation.

Sci Rep. 2025-1-22

[5]
Tetrahydrodipyrazolopyridine covalently immobilized on silica-coated magnetic nanoparticles as a basic heterogeneous catalyst for multicomponent synthesis of dihydropyrano[2,3-c]pyrazole derivatives and Knoevenagel condensation.

Sci Rep. 2025-7-3

[6]
Copper(ii) complex-decorated ZrFeO nanoparticles as a recyclable magnetic nanocatalyst for synthesis of N-containing heterocycles.

Nanoscale Adv. 2025-5-12

[7]
Graphene oxide supported oxidovanadium coordination compound as an efficient catalyst for the green oxidation of benzyl alcohol.

Sci Rep. 2025-7-2

[8]
Selegiline for Alzheimer's disease.

Cochrane Database Syst Rev. 2003

[9]
Fabrication of FeO@UiO-66-NH-QCA-CuCl nanocomposites as a novel magnetic metal-organic framework catalyst for sustainable synthesis of 2,3-diarylquinolines.

BMC Chem. 2025-7-3

[10]
Magnetic resorcinol-formaldehyde supported isatin-Schiff-base/Fe as a green and reusable nanocatalyst for the synthesis of pyrano[2,3-]pyrimidines.

Nanoscale Adv. 2025-1-20

本文引用的文献

[1]
Magnetic resorcinol-formaldehyde supported isatin-Schiff-base/Fe as a green and reusable nanocatalyst for the synthesis of pyrano[2,3-]pyrimidines.

Nanoscale Adv. 2025-1-20

[2]
Amine functionalized magnetic resorcinol formaldehyde as a green and reusable nanocatalyst for the Knoevenagel condensation.

Sci Rep. 2025-1-22

[3]
Amine-containing yolk-shell structured magnetic organosilica nanocomposite as a highly efficient catalyst for the Knoevenagel reaction.

Front Chem. 2024-2-6

[4]
Amino-Functionalized Silica@Resorcinol-Formaldehyde Nanocomposites for the Removal of Cr(VI) from Aqueous Solutions.

Polymers (Basel). 2023-10-15

[5]
FeO@C@MCM41-guanidine core-shell nanostructures as a powerful and recyclable nanocatalyst with high performance for synthesis of Knoevenagel reaction.

Sci Rep. 2023-6-26

[6]
synthesis of SOH supported FeO@resorcinol-formaldehyde resin core/shell and its catalytic evaluation towards the synthesis of hexahydroquinoline derivatives in green conditions.

RSC Adv. 2020-11-13

[7]
An overview of metal-free sustainable nitrogen-based catalytic knoevenagel condensation reaction.

Org Biomol Chem. 2022-3-16

[8]
Yolk-shell structured magnetic mesoporous silica: a novel and highly efficient adsorbent for removal of methylene blue.

Sci Rep. 2021-12-1

[9]
AgCO containing magnetic nanocomposite as a powerful and recoverable catalyst for Knoevenagel condensation.

Sci Rep. 2021-9-21

[10]
A review of the recent progress on heterogeneous catalysts for Knoevenagel condensation.

Dalton Trans. 2021-4-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索