Li Dengji, Xie Pengshan, Yang Yuekun, Wang Yunfan, Lan Changyong, Wei Yiyang, Liao Jiachi, Li Bowen, Wu Zenghui, Quan Quan, Zhang Yuxuan, Meng You, Ding Mingqi, Yan Yan, Shen Yi, Wang Weijun, Tsang Sai-Wing, Liang Shi-Jun, Miao Feng, Ho Johnny C
Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China.
Institute of Brain-Inspired Intelligence, National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China.
Nat Commun. 2025 Jul 1;16(1):5472. doi: 10.1038/s41467-025-60530-w.
Conventional computer systems based on the Von Neumann architecture rely on silicon transistors with binary states for information representation and processing. However, exploiting emerging materials' intrinsic physical properties and dynamic behaviors offers a promising pathway for developing next-generation brain-inspired neuromorphic hardware. Here, we introduce a stable and controllable photoelectricity-induced halide-ion segregation effect in epitaxially grown mixed-halide perovskite CsPbBrI microwire networks on mica, as confirmed by various in-situ measurements. The dynamic segregation and recovery processes show the reconfigurable, self-powered photoresponse, enabling non-volatile light information storage and precise modulation of optoelectronic properties. Furthermore, our microwire array successfully addressed a typical graphical neural network problem and an image restoration task without external circuits, underscoring the potential of in-material dynamics to achieve highly parallel and energy-efficient physical computing in the post-Moore era.
基于冯·诺依曼架构的传统计算机系统依靠具有二进制状态的硅晶体管来进行信息表示和处理。然而,利用新兴材料的固有物理特性和动态行为为开发下一代受大脑启发的神经形态硬件提供了一条有前景的途径。在此,我们在云母上外延生长的混合卤化物钙钛矿CsPbBrI微线网络中引入了一种稳定且可控的光电诱导卤离子分离效应,各种原位测量证实了这一点。动态分离和恢复过程展示了可重构的自供电光响应,实现了非易失性光信息存储以及对光电特性的精确调制。此外,我们的微线阵列在没有外部电路的情况下成功解决了一个典型的图形神经网络问题和一项图像恢复任务,突出了材料内部动力学在摩尔时代之后实现高度并行和节能物理计算的潜力。