Guo Liling, Liu Guoyun, He Jingjing, Jia Xiaoxiao, He Yonglin, Wang Zhenhua, Qian Hongwu
Department of General Medicine, The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
Department of Cardiology, The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
Nat Commun. 2025 Jul 1;16(1):6007. doi: 10.1038/s41467-025-61143-z.
In the endoplasmic reticulum (ER), defective proteins are cleaned via the ER-associated protein degradation (ERAD) pathway. The HRD1 ubiquitin ligase complex, with HRD1, SEL1L, XTP3B or OS9 and Derlin family proteins as the core components, plays essential roles in the recognition, retrotranslocation, and ubiquitination of luminal ERAD substrates. However, the molecular basis is unclear. Here, we determine the cryo-EM structure of the human HRD1-SEL1L-XTP3B complex at 3.3 Å resolution. HRD1 is a dimer, but only one protomer carries the SEL1L-XTP3B complex, forming a 2:1:1 complex. Careful inspection of the EM map reveals a trimmed N-glycan sandwiched by XTP3B and SEL1L, and SEL1L may also contribute to the recognition of the trimmed glycan. The complex undergoes dramatic conformational changes when coexpressed with Derlin proteins. The HRD1 dimer is broken, and two HRD1-SEL1L-XTP3B (1:1:1) units are joined together by a four-helix bundle formed by two SEL1L molecules. The four-helix bundle also touches the micelle, resulting in a bent transmembrane region. These findings indicate that Derlins engagement may induce local curvature in the ER membrane. Cell-based functional assays are conducted to verify the structural observations. Our work provides a structural basis for further mechanistic elucidation of mammalian HRD1 complex-mediated ERAD.
在内质网(ER)中,有缺陷的蛋白质通过内质网相关蛋白降解(ERAD)途径被清除。以HRD1、SEL1L、XTP3B或OS9以及Derlin家族蛋白为核心成分的HRD1泛素连接酶复合体,在内质网腔ERAD底物的识别、逆向转运和泛素化过程中发挥着重要作用。然而,其分子基础尚不清楚。在此,我们确定了人源HRD1-SEL1L-XTP3B复合体的冷冻电镜结构,分辨率为3.3埃。HRD1是一个二聚体,但只有一个原体携带SEL1L-XTP3B复合体,形成一个2:1:1的复合体。仔细观察电镜图谱发现,一个经过修剪的N-聚糖夹在XTP3B和SEL1L之间,并且SEL1L可能也有助于对修剪后的聚糖的识别。当与Derlin蛋白共表达时,该复合体发生显著的构象变化。HRD1二聚体断裂,两个HRD1-SEL1L-XTP3B(1:1:1)单元通过由两个SEL1L分子形成的四螺旋束连接在一起。四螺旋束也接触到胶束,导致跨膜区域弯曲。这些发现表明Derlin蛋白的参与可能会在内质网膜中诱导局部曲率。我们进行了基于细胞的功能测定以验证结构观察结果。我们的工作为进一步阐明哺乳动物HRD1复合体介导的ERAD的机制提供了结构基础。