Suppr超能文献

用于检测帕金森病的异常脑电记录的独立成分分析

Independent component analysis of oddball EEG recordings to detect Parkinson's disease.

作者信息

Smrdel Aleš

机构信息

Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia.

出版信息

Sci Rep. 2025 Jul 1;15(1):21889. doi: 10.1038/s41598-025-07645-8.

Abstract

Parkinson's Disease (PD) is one of the most common diseases affecting the human brain, thus approaches are needed to help diagnose it. Since the changes caused by PD are visible in electroencephalograms (EEG), analysis of EEG represents one such approach. In this study, we used 25 EEG recordings of PD patients and 25 of healthy controls, subjected to auditory tasks, available in the Parkinson's Oddball database. The mean age of the PD patients was 69.7 years (std. 8.7) and 69.3 years (std. 9.6) of the control subjects. We employed the Independent Component Analysis (ICA) method to characterize the PD and control EEG recordings, to represent the changes in habituation as a response to different auditory events via the ICA components in the form of topological distributions, and to classify the EEG recordings of the two groups. Characterization of the frontal and central electrodes of the topological distribution showed high separation power to differentiate EEG recordings of the PD patients and healthy subjects. The average classification results using 5-fold cross-validation over 50 trials and the first four features ranked according to the variance of the ICA components, while the features were logarithm of the variance of the ICA components, yielded the following performances: classification accuracy of 88.56%, sensitivity of 89.36%, and specificity of 87.76%. The use of the ICA method appears to be a promising approach for characterizing and classifying auditory EEG recordings.

摘要

帕金森病(PD)是影响人类大脑的最常见疾病之一,因此需要一些方法来帮助诊断它。由于帕金森病引起的变化在脑电图(EEG)中是可见的,对脑电图的分析就是这样一种方法。在本研究中,我们使用了帕金森病Oddball数据库中提供的25名帕金森病患者和25名健康对照者的脑电图记录,这些记录均经过听觉任务测试。帕金森病患者的平均年龄为69.7岁(标准差8.7),对照者的平均年龄为69.3岁(标准差9.6)。我们采用独立成分分析(ICA)方法来表征帕金森病患者和对照者的脑电图记录,通过拓扑分布形式的ICA成分来表示作为对不同听觉事件的反应的习惯化变化,并对两组的脑电图记录进行分类。拓扑分布的额叶和中央电极的表征显示出很高的区分能力,能够区分帕金森病患者和健康受试者的脑电图记录。使用5折交叉验证在50次试验上对根据ICA成分的方差排名的前四个特征进行平均分类结果,其中特征是ICA成分方差的对数,得到以下性能:分类准确率为88.56%,灵敏度为89.36%,特异性为87.76%。使用ICA方法似乎是一种用于表征和分类听觉脑电图记录的有前途的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验