Majeed Asif, Singh Harkirat
Department of Physics, National Institute of Technology, Hazratbal, Srinagar, 190006, India.
Sci Rep. 2025 Jul 1;15(1):21000. doi: 10.1038/s41598-025-88556-6.
This study presents a theoretical analysis of the proximity effect in superconductor/ferromagnet (S/F) hybrid structures, specifically focusing on NbN/Ho/NbN and NbN/F1/Ho/F2/NbN multilayers. We use self-consistent solutions of the Usadel equations to investigate the energy-resolved density of states (DOS) and superconducting critical temperature ( ) as functions of ferromagnetic layer thickness, misorientation angles, interfacial roughness, and phase differences between the superconducting NbN layers. The thickness of the ferromagnetic Ho layer is shown to significantly influence superconducting properties, including a reduction in the superconducting gap due to the inverse proximity effect. For thin Ho layers, both DOS and are slightly suppressed, while intermediate thicknesses exhibit non-monotonic behavior, corresponding to complex superconducting-ferromagnetic interactions, and thicker Ho layers lead to diminished superconductivity. The interplay between the magnetization inhomogeneity in Ho and the phase coherence of the superconducting order parameter is emphasized, revealing the appearance of zero-energy peaks (ZEPs) in the DOS. These unique features, such as controllable singlet and triplet states, are sensitive to the phase difference between the NbN electrodes. Additionally, triplet generation is also sensitive to the misalignment angle between the F1, F2, and Ho layers. The phase difference modulates DOS and , with certain alignments favoring triplet pairing, enabling external control over triplet generation similar to a spin valve device. Furthermore, the effect of interfacial roughness is systematically analyzed, with its implications for experimental realizations providing practical insights into optimizing S/F systems for future applications in superconducting spintronics. Our findings offer a comprehensive understanding of the proximity effect in S/F hybrid structures and its potential for tailored superconducting spintronic applications.
本研究对超导体/铁磁体(S/F)混合结构中的邻近效应进行了理论分析,特别关注NbN/Ho/NbN和NbN/F1/Ho/F2/NbN多层膜。我们使用乌萨德尔方程的自洽解来研究态密度(DOS)和超导临界温度( )与铁磁层厚度、取向差角、界面粗糙度以及超导NbN层之间的相位差的函数关系。结果表明,铁磁Ho层的厚度对超导性能有显著影响,包括由于逆邻近效应导致超导能隙减小。对于薄Ho层,DOS和 都略有抑制,而中间厚度呈现非单调行为,对应于复杂的超导 - 铁磁相互作用,较厚的Ho层则导致超导性减弱。强调了Ho中磁化不均匀性与超导序参量相位相干性之间的相互作用,揭示了DOS中零能峰(ZEPs)的出现。这些独特特征,如可控的单重态和三重态,对NbN电极之间的相位差很敏感。此外,三重态的产生对F1、F2和Ho层之间的失准角也很敏感。相位差调制DOS和 ,某些取向有利于三重态配对,从而能够像自旋阀器件一样对三重态产生进行外部控制。此外,还系统分析了界面粗糙度的影响,其对实验实现的影响为优化S/F系统以用于超导自旋电子学的未来应用提供了实际见解。我们的研究结果全面理解了S/F混合结构中的邻近效应及其在定制超导自旋电子学应用中的潜力。