一种用于道路裂缝检测的双域感知门控自适应融合算法。
A dual-domain perception gate-controlled adaptive fusion algorithm for road crack detection.
作者信息
Zhang Ziyang, Feng Yong'an
机构信息
Liaoning Technical University, Huludao, 125105, China.
出版信息
Sci Rep. 2025 Jul 1;15(1):21485. doi: 10.1038/s41598-025-07610-5.
Road crack detection presents critical challenges, including diverse defect patterns and complex anomaly characteristics. The current object detection algorithms demonstrate deficiencies in considering feature redundancy across channel-spatial dimensions, employ indiscriminate fusion strategies for multi-stage feature information, and particularly neglect the high-frequency characteristics inherent in crack features, leading to inefficient network performance and a loss of crucial information. Building upon the identified limitations, this paper proposes a dual-domain perception gate-controlled adaptive fusion network (DP-DETR) that achieves dynamic perception of salient features across channel and spatial domains within latent space. To enhance focus on critical features, a dual-domain dynamic perception information distillation mechanism is constructed, which distills redundant features separately across channel and spatial domains, effectively reducing architectural processing redundancy while achieving discriminative characteristic representation efficiency. In order to address the challenge of coarse-grained fusion in multi-stage feature integration, a feature information gating-adaptive fusion module (FGAF-Fusion) is proposed, which facilitates interactive channel-spatial information fusion through mixed local channel attention while employing gated adaptive fusion operations to selectively retain critical semantic information of small-scale targets. In response to the persistent high-frequency signature identified within crack feature distributions, a dual-domain structural feature enhancement loss function is designed, which elevates the weighting of high-frequency information by leveraging a spectral weighting matrix, while complementarily enhancing crack edge texture features in the spatial domain through gradient map integration. The experimental results obtained on the public RDD2022 dataset demonstrate that the proposed DP-DETR (Dual-Domain Perception Gate-Controlled Adaptive Fusion Network) approach mAP50 and mAP50:95 values of 54.2% and 25.8%, respectively, representing improvements of 6.7 and 4.2 percentage points over RT-DETR. In road crack object detection tasks, the proposed DP-DETR method can effectively detect various types of road defects, demonstrating highly competitive detection results and good robustness. The code will be released at https://github.com/jiangsu415/DP-DETR .
道路裂缝检测面临着严峻挑战,包括多样的缺陷模式和复杂的异常特征。当前的目标检测算法在考虑跨通道 - 空间维度的特征冗余方面存在不足,对多阶段特征信息采用不加区分的融合策略,尤其忽视了裂缝特征中固有的高频特征,导致网络性能低下且关键信息丢失。基于已识别的这些局限性,本文提出了一种双域感知门控自适应融合网络(DP - DETR),该网络可在潜在空间中实现对跨通道和空间域显著特征的动态感知。为了增强对关键特征的关注,构建了一种双域动态感知信息蒸馏机制,该机制分别在通道和空间域中蒸馏冗余特征,有效减少架构处理冗余,同时实现判别性特征表示效率。为了解决多阶段特征集成中的粗粒度融合挑战,提出了一种特征信息门控自适应融合模块(FGAF - Fusion),该模块通过混合局部通道注意力促进通道 - 空间信息交互融合,同时采用门控自适应融合操作来选择性保留小尺度目标的关键语义信息。针对裂缝特征分布中持续存在的高频特征,设计了一种双域结构特征增强损失函数,该函数通过利用频谱加权矩阵提高高频信息的权重,同时通过梯度图积分在空间域中互补增强裂缝边缘纹理特征。在公共RDD2022数据集上获得的实验结果表明,所提出的DP - DETR(双域感知门控自适应融合网络)方法的mAP50和mAP50:95值分别为54.2%和25.8%,比RT - DETR分别提高了6.7和4.2个百分点。在道路裂缝目标检测任务中,所提出的DP - DETR方法能够有效检测各种类型的道路缺陷,展示出极具竞争力的检测结果和良好的鲁棒性。代码将在https://github.com/jiangsu415/DP - DETR上发布。
相似文献
Front Public Health. 2025-6-18
PeerJ Comput Sci. 2025-5-19
Sci Rep. 2025-7-2
Entropy (Basel). 2025-5-27
本文引用的文献
IEEE Trans Pattern Anal Mach Intell. 2021-5
IEEE Trans Pattern Anal Mach Intell. 2020-8