Irie Nobuko, Takeda Naoki, Satou Yorifumi, Araki Kimi, Ono Masahiro
The Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan.
Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan.
Nat Commun. 2025 Jul 1;16(1):5720. doi: 10.1038/s41467-025-61279-y.
Investigating the temporal dynamics of gene expression is crucial for understanding gene regulation across various biological processes. Using the Fluorescent Timer protein, the Timer-of-cell-kinetics-and-activity system enables analysis of transcriptional dynamics at the single-cell level. However, the complexity of Timer fluorescence data has limited its broader application. Here, we introduce an integrative approach combining molecular biology and machine learning to elucidate Foxp3 transcriptional dynamics through flow cytometric Timer analysis. We have developed a convolutional neural network-based method that incorporates image conversion and class-specific feature visualisation for class-specific feature identification at the single-cell level. Biologically, we developed a novel CRISPR mutant of Foxp3 fluorescent Timer reporter mice lacking the enhancer Conserved Non-coding Sequence 2, which revealed new roles of this enhancer in regulating Foxp3 transcription frequency under specific conditions. Furthermore, analysis of wild-type Foxp3 fluorescent Timer reporter mice at different ages uncovered distinct patterns of Foxp3 expression from neonatal to aged mice, highlighting prominent thymus-like features of neonatal splenic Foxp3 T cells. In conclusion, our study uncovers previously unrecognised Foxp3 transcriptional dynamics, establishing a proof-of-concept for integrating CRISPR, single-cell dynamics analysis, and machine learning methods as advanced techniques to understand transcriptional dynamics in vivo.
研究基因表达的时间动态对于理解各种生物过程中的基因调控至关重要。利用荧光定时器蛋白,细胞动力学和活性定时器系统能够在单细胞水平上分析转录动态。然而,定时器荧光数据的复杂性限制了其更广泛的应用。在这里,我们引入了一种结合分子生物学和机器学习的综合方法,通过流式细胞术定时器分析来阐明Foxp3转录动态。我们开发了一种基于卷积神经网络的方法,该方法结合了图像转换和类特异性特征可视化,用于在单细胞水平上进行类特异性特征识别。在生物学方面,我们开发了一种新型的Foxp3荧光定时器报告基因小鼠的CRISPR突变体,该突变体缺乏增强子保守非编码序列2,这揭示了该增强子在特定条件下调节Foxp3转录频率的新作用。此外,对不同年龄的野生型Foxp3荧光定时器报告基因小鼠的分析揭示了从新生小鼠到老年小鼠Foxp3表达的不同模式,突出了新生脾脏Foxp3 T细胞显著的胸腺样特征。总之,我们的研究揭示了以前未被认识的Foxp3转录动态,为整合CRISPR、单细胞动态分析和机器学习方法作为理解体内转录动态的先进技术建立了概念验证。
Dialogues Clin Neurosci. 2025-12
Cochrane Database Syst Rev. 2021-4-19
Cochrane Database Syst Rev. 2020-1-9
BMC Bioinformatics. 2025-2-8
Biophys Physicobiol. 2024-2-16
Discov Immunol. 2024-5-13