文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过荧光定时器实现机器学习辅助的时间转录动力学解码。

Machine learning-assisted decoding of temporal transcriptional dynamics via fluorescent timer.

作者信息

Irie Nobuko, Takeda Naoki, Satou Yorifumi, Araki Kimi, Ono Masahiro

机构信息

The Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan.

Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan.

出版信息

Nat Commun. 2025 Jul 1;16(1):5720. doi: 10.1038/s41467-025-61279-y.


DOI:10.1038/s41467-025-61279-y
PMID:40595611
Abstract

Investigating the temporal dynamics of gene expression is crucial for understanding gene regulation across various biological processes. Using the Fluorescent Timer protein, the Timer-of-cell-kinetics-and-activity system enables analysis of transcriptional dynamics at the single-cell level. However, the complexity of Timer fluorescence data has limited its broader application. Here, we introduce an integrative approach combining molecular biology and machine learning to elucidate Foxp3 transcriptional dynamics through flow cytometric Timer analysis. We have developed a convolutional neural network-based method that incorporates image conversion and class-specific feature visualisation for class-specific feature identification at the single-cell level. Biologically, we developed a novel CRISPR mutant of Foxp3 fluorescent Timer reporter mice lacking the enhancer Conserved Non-coding Sequence 2, which revealed new roles of this enhancer in regulating Foxp3 transcription frequency under specific conditions. Furthermore, analysis of wild-type Foxp3 fluorescent Timer reporter mice at different ages uncovered distinct patterns of Foxp3 expression from neonatal to aged mice, highlighting prominent thymus-like features of neonatal splenic Foxp3 T cells. In conclusion, our study uncovers previously unrecognised Foxp3 transcriptional dynamics, establishing a proof-of-concept for integrating CRISPR, single-cell dynamics analysis, and machine learning methods as advanced techniques to understand transcriptional dynamics in vivo.

摘要

研究基因表达的时间动态对于理解各种生物过程中的基因调控至关重要。利用荧光定时器蛋白,细胞动力学和活性定时器系统能够在单细胞水平上分析转录动态。然而,定时器荧光数据的复杂性限制了其更广泛的应用。在这里,我们引入了一种结合分子生物学和机器学习的综合方法,通过流式细胞术定时器分析来阐明Foxp3转录动态。我们开发了一种基于卷积神经网络的方法,该方法结合了图像转换和类特异性特征可视化,用于在单细胞水平上进行类特异性特征识别。在生物学方面,我们开发了一种新型的Foxp3荧光定时器报告基因小鼠的CRISPR突变体,该突变体缺乏增强子保守非编码序列2,这揭示了该增强子在特定条件下调节Foxp3转录频率的新作用。此外,对不同年龄的野生型Foxp3荧光定时器报告基因小鼠的分析揭示了从新生小鼠到老年小鼠Foxp3表达的不同模式,突出了新生脾脏Foxp3 T细胞显著的胸腺样特征。总之,我们的研究揭示了以前未被认识的Foxp3转录动态,为整合CRISPR、单细胞动态分析和机器学习方法作为理解体内转录动态的先进技术建立了概念验证。

相似文献

[1]
Machine learning-assisted decoding of temporal transcriptional dynamics via fluorescent timer.

Nat Commun. 2025-7-1

[2]
Novel non-coding FOXP3 transcript isoform associated to potential transcriptional interference in human regulatory T cells.

RNA Biol. 2025-12

[3]
Comprehensive single-cell chromatin and transcriptomic profiling of peripheral immune cells in nonsegmental vitiligo.

Br J Dermatol. 2025-6-20

[4]
Leveraging machine learning to uncover the hidden links between trusting behavior and biological markers.

Dialogues Clin Neurosci. 2025-12

[5]
A deep learning approach to direct immunofluorescence pattern recognition in autoimmune bullous diseases.

Br J Dermatol. 2024-7-16

[6]
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.

Cochrane Database Syst Rev. 2021-4-19

[7]
Evaluating the predictive power of combined gene expression dynamics from single cells on antibiotic survival.

mSystems. 2025-6-17

[8]
Novel application of metabolic imaging of early embryos using a light-sheet on-a-chip device: a proof-of-concept study.

Hum Reprod. 2025-1-1

[9]
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.

Cochrane Database Syst Rev. 2020-1-9

[10]
Immunotherapy with low-dose IL-2 attenuates vascular injury in mice with diabetic and neovascular retinopathy by restoring the balance between Foxp3 Tregs and CD8 T cells.

Diabetologia. 2025-3-25

本文引用的文献

[1]
TockyPrep: data preprocessing methods for flow cytometric fluorescent timer analysis.

BMC Bioinformatics. 2025-2-8

[2]
Distinct T-cell receptor (TCR) gene segment usage and MHC-restriction between foetal and adult thymus.

Elife. 2024-12-5

[3]
A multidimensional toolkit for elucidating temporal trajectories in cell development in vivo.

Development. 2024-12-15

[4]
Unraveling T-cell dynamics using fluorescent timer: Insights from the Tocky system.

Biophys Physicobiol. 2024-2-16

[5]
G-Net: Implementing an enhanced brain tumor segmentation framework using semantic segmentation design.

PLoS One. 2024

[6]
Conserved epigenetic hallmarks of T cell aging during immunity and malignancy.

Nat Aging. 2024-8

[7]
Spectrum of Treg and self-reactive T cells: single cell perspectives from old friend HTLV-1.

Discov Immunol. 2024-5-13

[8]
Comparison of three machine learning algorithms for classification of B-cell neoplasms using clinical flow cytometry data.

Cytometry B Clin Cytom. 2024-7

[9]
Non-invasive classification of macrophage polarisation by 2P-FLIM and machine learning.

Elife. 2022-10-18

[10]
HTLV-1 infection promotes excessive T cell activation and transformation into adult T cell leukemia/lymphoma.

J Clin Invest. 2021-12-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索