Mozafari E S, Baei Mohammad T, Lemeski E Tazikeh
Department of Chemistry, Go.C., Islamic Azad University, Gorgan, Iran.
Department of Chemistry, Az.C., Islamic Azad University, Azadshahr, Iran.
Sci Rep. 2025 Jul 2;15(1):23034. doi: 10.1038/s41598-025-03293-0.
This study investigated the anti-inflammatory, anticancer, antiviral, and antibacterial effects of allicin and its complexes (Allicin/C₂₄, Allicin/B₁₂N₁₂, and Allicin/Al₁₂N₁₂) using advanced computational techniques such as Density Functional Theory (DFT), Quantum Theory of Atoms in Molecules (QTAIM), and molecular docking. The interactions were analyzed in two phases: gas and aqueous. Results revealed that the Allicin/Al₁₂N₁₂ complex exhibited the highest adsorption energy (Ead = -44.43 kcal/mol in the gas phase) and thermodynamic stability (ΔH = -44.36 kcal/mol, ΔG = -29.19 kcal/mol). QTAIM analysis revealed that the Allicin/C₂₄ complex involves very weak noncovalent interactions, the Allicin/B₁₂N₁₂ complex shows weak covalent bonding with considerable ionic character; and the Allicin/Al₁₂N₁₂ complex exhibits stronger covalent interactions with significant electron density sharing. The Allicin/Al₁₂N₁₂ complex showed a reduced energy gap (3.44 eV) and higher reactivity than free allicin (5.42 eV). Molecular docking demonstrated that this complex had the strongest binding affinity with biological targets, such as HER2, TNF-α, COVID-19 main protease, and Staphylococcus aureus. UV-Vis and IR spectroscopy revealed significant electronic and vibrational modifications in the complexes, particularly Allicin/Al₁₂N₁₂. These findings suggest that nanocages, especially Al₁₂N₁₂, can significantly enhance the stability, bioavailability, and therapeutic potential of allicin. The Allicin/Al₁₂N₁₂ complex, with its strong binding affinity and favorable electronic properties, has emerged as a promising candidate for treating cancer, inflammation, bacterial infections, and COVID-19. This study highlights the importance of natural products in drug discovery and the role of computational methods in understanding complex biological interactions.
本研究使用密度泛函理论(DFT)、分子中的原子量子理论(QTAIM)和分子对接等先进计算技术,研究了大蒜素及其复合物(大蒜素/C₂₄、大蒜素/B₁₂N₁₂和大蒜素/Al₁₂N₁₂)的抗炎、抗癌、抗病毒和抗菌作用。在气相和水相两个阶段分析了相互作用。结果表明,大蒜素/Al₁₂N₁₂复合物表现出最高的吸附能(气相中Ead = -44.43 kcal/mol)和热力学稳定性(ΔH = -44.36 kcal/mol,ΔG = -29.19 kcal/mol)。QTAIM分析表明,大蒜素/C₂₄复合物涉及非常弱的非共价相互作用,大蒜素/B₁₂N₁₂复合物显示出具有相当离子特性的弱共价键;而大蒜素/Al₁₂N₁₂复合物表现出更强的共价相互作用和显著的电子密度共享。大蒜素/Al₁₂N₁₂复合物显示出比游离大蒜素(5.42 eV)更低的能隙(3.44 eV)和更高的反应活性。分子对接表明,该复合物与生物靶点如HER2、TNF-α、新冠病毒主要蛋白酶和金黄色葡萄球菌具有最强的结合亲和力。紫外可见光谱和红外光谱显示复合物中存在显著的电子和振动修饰,特别是大蒜素/Al₁₂N₁₂。这些发现表明,纳米笼,尤其是Al₁₂N₁₂,可以显著提高大蒜素的稳定性、生物利用度和治疗潜力。大蒜素/Al₁₂N₁₂复合物具有很强的结合亲和力和良好的电子性质,已成为治疗癌症、炎症、细菌感染和新冠病毒的有前途的候选药物。本研究强调了天然产物在药物发现中的重要性以及计算方法在理解复杂生物相互作用中的作用。