Xi Xiaojing, Lu Zhaoming, Chen Hua-Jun, Tian Wenjie, Yang Yan-Ling
School of Energy and Chemical Engineering, Catalysis and Energy Conservation of Henan Provincial Engineering Centre, Luoyang Institute of Science and Technology, Luoyang, 471023, PR China.
School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, PR China.
Sci Rep. 2025 Jul 1;15(1):21090. doi: 10.1038/s41598-025-04701-1.
In the field of photocatalytic degradation, the separation and recycle technology of powdery g-CN after usage has not been mature so far as well as the secondary pollution problems for large-scale industrial applications. In this thesis, through depositing g-CN nanosheets onto the surface of flexible carbon fiber textiles using chemical vapor deposition (CVD) method, separable and recyclable carbon-fiber/g-CN nanosheet array was fabricated by method. The photocatalytic, electrocatalytic, and photoelectrocatalytic performance of carbon-fiber/g-CN nanosheet array are studied. The results of in-situ XPS spectra confirm that the photoexcited electrons migrate from g-CN nanosheets to carbon fibers in the carbon-fiber/g-CN nanosheet array under light illumination, which enhances the separation of photo-generated electrons and holes. The applied potential further accelerates the migration of photogenerated electrons towards the cathode, thereby fostering a synergistic interplay between electrochemical and photophysical processes. Upon completion of a 240-minute photoelectrocatalytic treatment, the degradation efficiency of 2,4-dinitrophenol attains a remarkable 99.5% level. The assembly strategy developed herein significantly reduce the separable and recyclable cost of powdery photocatalysts and offer valuables references for industrial application of photocatalysis and photoelectrocatalysis. Our method may provide a general methodology in the design of separable and recyclable photocatalysts with broad applications in environment-related fields.
在光催化降解领域,目前粉末状g-CN使用后的分离回收技术尚不成熟,且存在大规模工业应用中的二次污染问题。在本论文中,通过化学气相沉积(CVD)法将g-CN纳米片沉积在柔性碳纤维织物表面,制备出了可分离回收的碳纤维/g-CN纳米片阵列。研究了碳纤维/g-CN纳米片阵列的光催化、电催化和光电催化性能。原位XPS光谱结果证实,在光照下,光激发电子从g-CN纳米片迁移至碳纤维/g-CN纳米片阵列中的碳纤维上,这增强了光生电子和空穴的分离。施加的电势进一步加速了光生电子向阴极的迁移,从而促进了电化学和光物理过程之间的协同相互作用。经过240分钟的光电催化处理后,2,4-二硝基苯酚的降解效率达到了高达99.5%的显著水平。本文所开发的组装策略显著降低了粉末状光催化剂的分离回收成本,并为光催化和光电催化的工业应用提供了有价值的参考。我们的方法可能为可分离回收光催化剂的设计提供一种通用方法,在环境相关领域具有广泛应用。