用于预测肝细胞癌肿瘤免疫微环境类型及抗PD-1/PD-L1治疗疗效的MRI影像组学模型
MRI radiomics model for predicting tumor immune microenvironment types and efficacy of anti-PD-1/PD-L1 therapy in hepatocellular carcinoma.
作者信息
Zhang Rui, Peng Wei, Wang Yao, Jiang Yunping, Wang Junli, Zhang Siying, Li Zhi, Shi Yushu, Chen Feng, Feng Zhan, Xiao Wenbo
机构信息
Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, China.
Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, China.
出版信息
BMC Med Imaging. 2025 Jul 1;25(1):211. doi: 10.1186/s12880-025-01751-9.
BACKGROUND
To improve the prediction of immune checkpoint inhibitors (ICIs) efficacy in hepatocellular carcinoma (HCC), this study categorized the tumor immune microenvironment (TIME) into two types: immune-activated (IA), characterized by a high CD8 + score and high PD-L1 combined positive score (CPS), and non-immune-activated (NIA), encompassing all other conditions. We aimed to develop an MRI-based radiomics model to predict TIME types and validate its predictive capability for ICIs efficacy in HCC patients receiving anti-PD-1/PD-L1 therapy.
METHODS
The study included 200 HCC patients who underwent preoperative/pretreatment multiparametric contrast-enhanced MRI (Cohort 1: 168 HCC patients with hepatectomy from two centres; Cohort 2: 42 advanced HCC patients on anti-PD-1/PD-L1 therapy). In Cohort 1, after feature selection, clinical, intratumoral radiomics, peritumoral radiomics, combined radiomics, and clinical-radiomics models were established using machine learning algorithms. In cohort 2, the clinical-radiomics model's predictive ability for ICIs efficacy was assessed.
RESULTS
In Cohort 1, the AUC values for intratumoral, peritumoral, and combined radiomics models were 0.825, 0.809, and 0.868, respectively, in the internal validation set, and 0.73, 0.759, and 0.822 in the external validation set; the clinical-radiomics model incorporating neutrophil-to-lymphocyte ratio, tumor size, and combined radiomics score achieved an AUC of 0.887 in the internal validation set, outperforming clinical model (P = 0.049), and an AUC of 0.837 in the external validation set. In cohort 2, the clinical-radiomics model stratified patients into low- and high-score groups, demonstrating a significant difference in objective response rate (p = 0.003) and progression-free survival (p = 0.031).
CONCLUSIONS
The clinical-radiomics model is effective in predicting TIME types and efficacy of ICIs in HCC, potentially aiding in treatment decision-making.
背景
为了提高免疫检查点抑制剂(ICI)对肝细胞癌(HCC)疗效的预测能力,本研究将肿瘤免疫微环境(TIME)分为两种类型:免疫激活型(IA),其特征为高CD8 +评分和高程序性死亡配体1(PD-L1)联合阳性评分(CPS);非免疫激活型(NIA),涵盖所有其他情况。我们旨在开发一种基于磁共振成像(MRI)的放射组学模型来预测TIME类型,并验证其对接受抗程序性死亡蛋白1(PD-1)/PD-L1治疗的HCC患者ICI疗效的预测能力。
方法
本研究纳入了200例接受术前/治疗前多参数对比增强MRI检查的HCC患者(队列1:来自两个中心的168例接受肝切除术的HCC患者;队列2:42例接受抗PD-1/PD-L1治疗的晚期HCC患者)。在队列1中,经过特征选择后,使用机器学习算法建立了临床、瘤内放射组学、瘤周放射组学、联合放射组学和临床-放射组学模型。在队列2中,评估了临床-放射组学模型对ICI疗效的预测能力。
结果
在队列1中,瘤内、瘤周和联合放射组学模型在内部验证集中的曲线下面积(AUC)值分别为0.825、0.809和0.868,在外部验证集中分别为0.73、0.759和0.822;纳入中性粒细胞与淋巴细胞比值、肿瘤大小和联合放射组学评分的临床-放射组学模型在内部验证集中的AUC为0.887,优于临床模型(P = 0.049),在外部验证集中的AUC为0.837。在队列2中,临床-放射组学模型将患者分为低分和高分两组,两组的客观缓解率(P = 0.003)和无进展生存期(P = 0.031)存在显著差异。
结论
临床-放射组学模型可有效预测HCC患者的TIME类型和ICI疗效,可能有助于治疗决策。