Liang Yingying, Han Xiaorui, Wang Zihua, Lei Xiaoxiao, Lan Xinxin, Gao Yidong, Wei Xinhua, Wu Hongzhen
Department of Radiology, Guangzhou First People's Hospital, Guangzhou Medical University, School of Medicine, South China University of Technology, 1Panfu Road, Guangzhou, Guangdong Province, 510180, China.
Department of Radiology, Foshan Hospital of Traditional Chinese Medicine, Foshan, 528000, Guangdong Province, China.
BMC Med Imaging. 2025 Jul 1;25(1):221. doi: 10.1186/s12880-025-01789-9.
To evaluate whether the magnetic resonance imaging (MRI) proton density fat fraction (PDFF) can predict the biological characteristics of hepatocellular carcinoma (HCC) preoperatively.
A total of 131 HCCs were included. The MRI features and PDFF values were evaluated by two independent radiologists. The intraclass correlation coefficient (ICC) was calculated in terms of inter- and intra-observer agreements. The macrotrabecular-massive (MTM) subtype, microvascular invasion (MVI) status, histological grade, and proliferative status of Ki-67 and p53 were identified in HCCs. The diagnostic performance of the PDFF was evaluated using receiver operating characteristic (ROC) curve analysis based on the area under the receiver operating characteristic curve (AUC).
PDFF values showed significant differences between: MTM vs. non-MTM HCCs (p=0.048), MVI-positive vs. negative tumors (p=0.041), high- vs. low-grade lesions (p<0.001), and p53-positive vs. negative cases (p=0.015), but not for Ki-67 expression (p=0.075). The AUC values of the PDFF for predicting the MTM subtype, MVI status, histological grade, and proliferative status of p53 were 0.606, 0.588, 0.683, and 0.671, respectively. Only infiltrative appearance had significant difference between MVI-positive and MVI-negative groups. Combining PDFF with infiltrative appearance significantly improved MVI prediction (AUC = 0.681, p = 0.02).
MRI-PDFF demonstrates potential as a quantitative biomarker for preoperative assessment of HCC aggressiveness, particularly for the MTM subtype, histological grade and p53 status, though its standalone performance for MVI prediction remains limited. Integration with morphological features enhances diagnostic accuracy, supporting its complementary role in multiparametric HCC characterization.
Not applicable.
评估磁共振成像(MRI)质子密度脂肪分数(PDFF)能否在术前预测肝细胞癌(HCC)的生物学特性。
共纳入131例HCC。由两名独立的放射科医生评估MRI特征和PDFF值。计算观察者间和观察者内一致性的组内相关系数(ICC)。确定HCC中的大结节-实体型(MTM)亚型、微血管侵犯(MVI)状态、组织学分级以及Ki-67和p53的增殖状态。基于受试者工作特征曲线(ROC)下面积(AUC),采用ROC曲线分析评估PDFF的诊断性能。
PDFF值在以下方面存在显著差异:MTM与非MTM HCC(p = 0.048)、MVI阳性与阴性肿瘤(p = 0.041)、高级别与低级别病变(p < 0.001)以及p53阳性与阴性病例(p = 0.015),但Ki-67表达方面无显著差异(p = 0.075)。PDFF预测MTM亚型、MVI状态、组织学分级和p53增殖状态的AUC值分别为0.606、0.588、0.683和0.671。仅浸润表现在MVI阳性和MVI阴性组之间存在显著差异。将PDFF与浸润表现相结合可显著提高MVI预测能力(AUC = 0.681,p = 0.02)。
MRI-PDFF显示出作为术前评估HCC侵袭性的定量生物标志物的潜力,特别是对于MTM亚型、组织学分级和p53状态,尽管其单独预测MVI的性能仍然有限。与形态学特征相结合可提高诊断准确性,支持其在多参数HCC特征描述中的互补作用。
不适用。