Suppr超能文献

用于评估肝细胞癌生物学特征的MRI质子密度脂肪分数

MRI proton density fat fraction for estimation of biological characteristics in hepatocellular carcinoma.

作者信息

Liang Yingying, Han Xiaorui, Wang Zihua, Lei Xiaoxiao, Lan Xinxin, Gao Yidong, Wei Xinhua, Wu Hongzhen

机构信息

Department of Radiology, Guangzhou First People's Hospital, Guangzhou Medical University, School of Medicine, South China University of Technology, 1Panfu Road, Guangzhou, Guangdong Province, 510180, China.

Department of Radiology, Foshan Hospital of Traditional Chinese Medicine, Foshan, 528000, Guangdong Province, China.

出版信息

BMC Med Imaging. 2025 Jul 1;25(1):221. doi: 10.1186/s12880-025-01789-9.

Abstract

PURPOSE

To evaluate whether the magnetic resonance imaging (MRI) proton density fat fraction (PDFF) can predict the biological characteristics of hepatocellular carcinoma (HCC) preoperatively.

METHODS

A total of 131 HCCs were included. The MRI features and PDFF values were evaluated by two independent radiologists. The intraclass correlation coefficient (ICC) was calculated in terms of inter- and intra-observer agreements. The macrotrabecular-massive (MTM) subtype, microvascular invasion (MVI) status, histological grade, and proliferative status of Ki-67 and p53 were identified in HCCs. The diagnostic performance of the PDFF was evaluated using receiver operating characteristic (ROC) curve analysis based on the area under the receiver operating characteristic curve (AUC).

RESULTS

PDFF values showed significant differences between: MTM vs. non-MTM HCCs (p=0.048), MVI-positive vs. negative tumors (p=0.041), high- vs. low-grade lesions (p<0.001), and p53-positive vs. negative cases (p=0.015), but not for Ki-67 expression (p=0.075). The AUC values of the PDFF for predicting the MTM subtype, MVI status, histological grade, and proliferative status of p53 were 0.606, 0.588, 0.683, and 0.671, respectively. Only infiltrative appearance had significant difference between MVI-positive and MVI-negative groups. Combining PDFF with infiltrative appearance significantly improved MVI prediction (AUC = 0.681, p = 0.02).

CONCLUSIONS

MRI-PDFF demonstrates potential as a quantitative biomarker for preoperative assessment of HCC aggressiveness, particularly for the MTM subtype, histological grade and p53 status, though its standalone performance for MVI prediction remains limited. Integration with morphological features enhances diagnostic accuracy, supporting its complementary role in multiparametric HCC characterization.

CLINICAL TRIAL NUMBER

Not applicable.

摘要

目的

评估磁共振成像(MRI)质子密度脂肪分数(PDFF)能否在术前预测肝细胞癌(HCC)的生物学特性。

方法

共纳入131例HCC。由两名独立的放射科医生评估MRI特征和PDFF值。计算观察者间和观察者内一致性的组内相关系数(ICC)。确定HCC中的大结节-实体型(MTM)亚型、微血管侵犯(MVI)状态、组织学分级以及Ki-67和p53的增殖状态。基于受试者工作特征曲线(ROC)下面积(AUC),采用ROC曲线分析评估PDFF的诊断性能。

结果

PDFF值在以下方面存在显著差异:MTM与非MTM HCC(p = 0.048)、MVI阳性与阴性肿瘤(p = 0.041)、高级别与低级别病变(p < 0.001)以及p53阳性与阴性病例(p = 0.015),但Ki-67表达方面无显著差异(p = 0.075)。PDFF预测MTM亚型、MVI状态、组织学分级和p53增殖状态的AUC值分别为0.606、0.588、0.683和0.671。仅浸润表现在MVI阳性和MVI阴性组之间存在显著差异。将PDFF与浸润表现相结合可显著提高MVI预测能力(AUC = 0.681,p = 0.02)。

结论

MRI-PDFF显示出作为术前评估HCC侵袭性的定量生物标志物的潜力,特别是对于MTM亚型、组织学分级和p53状态,尽管其单独预测MVI的性能仍然有限。与形态学特征相结合可提高诊断准确性,支持其在多参数HCC特征描述中的互补作用。

临床试验编号

不适用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3c1/12211271/11e9c2f7d4c1/12880_2025_1789_Fig1_HTML.jpg

相似文献

1
MRI proton density fat fraction for estimation of biological characteristics in hepatocellular carcinoma.
BMC Med Imaging. 2025 Jul 1;25(1):221. doi: 10.1186/s12880-025-01789-9.

本文引用的文献

2
Multiphase MRI-Based Radiomics for Predicting Histological Grade of Hepatocellular Carcinoma.
J Magn Reson Imaging. 2024 Nov;60(5):2117-2127. doi: 10.1002/jmri.29289. Epub 2024 Feb 12.
4
The Value of LI-RADS and Radiomic Features from MRI for Predicting Microvascular Invasion in Hepatocellular Carcinoma within 5 cm.
Acad Radiol. 2024 Jun;31(6):2381-2390. doi: 10.1016/j.acra.2023.12.007. Epub 2024 Jan 9.
5
Evaluation and Prognostication of Gd-EOB-DTPA MRI and CT in Patients With Macrotrabecular-Massive Hepatocellular Carcinoma.
J Magn Reson Imaging. 2024 Jun;59(6):2071-2081. doi: 10.1002/jmri.29052. Epub 2023 Oct 15.
6
7
MRI proton density fat fraction for estimation of tumor grade in steatotic hepatocellular carcinoma.
Eur Radiol. 2023 Dec;33(12):8974-8985. doi: 10.1007/s00330-023-09864-x. Epub 2023 Jun 27.
9
Dynamic CT and Gadoxetic Acid-enhanced MRI Characteristics of P53-mutated Hepatocellular Carcinoma.
Radiology. 2023 Feb;306(2):e220531. doi: 10.1148/radiol.220531. Epub 2022 Oct 11.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验