Suppr超能文献

病理学知识图谱的构建与应用研究

Research on the construction and application of pathology knowledge graph.

作者信息

Wei Hong, Liu Xue, Cao Huiling, Qin Weiqi, Ma Qun, Kong Lingling

机构信息

College of Basic Medicine, Jining Medical University, 133 Hehua Road, Jining, 272067, China.

College of Clinical Medicine, Jining Medical University, 133 Hehua Road, Jining, 272067, China.

出版信息

BMC Med Educ. 2025 Jul 1;25(1):877. doi: 10.1186/s12909-025-07566-0.

Abstract

BACKGROUND

Digital transformation in pathology education faces three bottlenecks: fragmented knowledge transfer, low morphological diagnostic accuracy, and weak clinical reasoning. While knowledge graphs (KGs) offer potential solutions, existing medical KG lack multimodal integration and competency assessment. We designed an integrated Multimodal Knowledge Graph (MKG) with O-PIRTAS pedagogy to bridge these gaps.

METHODS

Following Design Science Research Methodology, we built a pathology-specific MKG featuring: (1) Semantic modeling of disease mechanisms (etiology-pathogenesis-morphology-clinical), (2) Cross-modal alignment of digital slides/animations/clinical cases, (3) Embedded metrics (KII/MDA/CCAE) for competency quantification. A quasi-experiment with 533 medical students (2022 cohort control: n = 275; 2023 MKG-O-PIRTAS: n = 258) evaluated outcomes via exam scores, validated questionnaires, and stratified interviews.

RESULTS

The MKG-O-PIRTAS group achieved significantly higher adjusted exam scores (76.14 vs. 73.72, p = 0.033) and 86% lower misdiagnosis rate in high performers (p = 0.015). Cognitive load diverged markedly (57.5 vs. 75.5, p = 0.007), with high performers dynamically contextualizing MKG nodes into clinical reasoning, while novices required scaffolded pathways. Over 80% of students endorsed enhanced knowledge integration and process optimization.

CONCLUSION

The MKG-O-PIRTAS artifact transforms scattered pathology knowledge into actionable clinical reasoning scaffolds, proving effective for personalized competency development. Future work will scale adaptive scaffolding and integrate real-time EMR modules, establishing a replicable paradigm for medical education intelligence.

摘要

背景

病理学教育中的数字化转型面临三个瓶颈:知识传授碎片化、形态学诊断准确性低以及临床推理能力薄弱。虽然知识图谱(KGs)提供了潜在的解决方案,但现有的医学知识图谱缺乏多模态整合和能力评估。我们设计了一个集成的多模态知识图谱(MKG)并采用O-PIRTAS教学法来弥合这些差距。

方法

遵循设计科学研究方法,我们构建了一个针对病理学的MKG,其特点包括:(1)疾病机制的语义建模(病因-发病机制-形态学-临床),(2)数字切片/动画/临床病例的跨模态对齐,(3)用于能力量化的嵌入式指标(KII/MDA/CCAE)。一项针对533名医学生的准实验(2022年队列对照组:n = 275;2023年MKG-O-PIRTAS组:n = 258)通过考试成绩、经过验证的问卷和分层访谈来评估结果。

结果

MKG-O-PIRTAS组的调整后考试成绩显著更高(76.14对73.72,p = 0.033),在高分者中误诊率降低了86%(p = 0.015)。认知负荷有显著差异(57.5对75.5,p = 0.007),高分者将MKG节点动态地融入临床推理,而新手则需要有支架式的路径。超过80%的学生认可知识整合和流程优化得到了加强。

结论

MKG-O-PIRTAS工具将零散的病理学知识转化为可操作的临床推理支架,证明对个性化能力发展有效。未来的工作将扩大自适应支架的规模并整合实时电子病历模块,建立一个可复制的医学教育智能化范式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74b1/12210752/f2ab73f20a7c/12909_2025_7566_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验