Wang Xingheng, Yuan Minjia, Ding Zhiying, Li Qian, Zhao Zhenyang, Tang Yuanjiao, Jiang Tao, Adeli Mohsen, Wang Xiaolin, Gu Peng, Cheng Chong, Li Ling
College of Polymer Science and Engineering, National Key Laboratory of Advanced Polymer Materials, Sichuan University, Chengdu 610065, China.
Department of Ultrasound, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China.
ACS Nano. 2025 Jul 15;19(27):25052-25068. doi: 10.1021/acsnano.5c04490. Epub 2025 Jul 3.
The rational design of sonocatalytic materials capable of on-demand modulating host innate and adaptive immune responses represents a critical advancement in tumor immunotherapy. Herein, inspired by the heme structures in peroxidase, we propose the design of a ferrous polyphthalocyanine network (p-PcFe) with highly efficient sonocatalytic activities for on-demand tumor immunotherapies in breast cancers. The p-PcFe exhibits remarkable structural properties, including its large π-conjugated networks, electron-rich catalytic centers, and d-π delocalization effects, which enable excellent peroxidase-like activity and ultrasound conversion efficiency within the tumor microenvironment to catalytically generate reactive oxygen species (ROS). Our systematic studies demonstrate that p-PcFe can controllably generate abundant ROS to destroy primary tumor cells and facilitate the release of tumor-associated antigens, thereby inducing immunogenic cell death (ICD) and promoting the maturation and migration of antigen-presenting cells. Consequently, the ICD effect drives macrophage polarization, enhances infiltration of tumor-specific effector T cells, and stimulates the secretion of pro-inflammatory cytokines, culminating in robust antitumor immunity, which then establishes durable immune memory and effectively prevents tumor recurrence and lung metastasis. This study demonstrates that p-PcFe not only elicits a potent antitumor immune response but also fosters long-term immune memory for cancer immunotherapy, which offers a promising and on-demand strategy to engineer ROS-producing materials to overcome the immunosuppression and boost immunogenicity for converting "immune-cold" into "immune-hot" tumors.
能够按需调节宿主固有免疫和适应性免疫反应的声催化材料的合理设计代表了肿瘤免疫治疗的一项关键进展。在此,受过氧化物酶中血红素结构的启发,我们提出设计一种具有高效声催化活性的亚铁聚酞菁网络(p-PcFe),用于乳腺癌的按需肿瘤免疫治疗。p-PcFe具有显著的结构特性,包括其大的π共轭网络、富电子催化中心和d-π离域效应,这些特性使其在肿瘤微环境中具有优异的过氧化物酶样活性和超声转换效率,从而催化产生活性氧(ROS)。我们的系统研究表明,p-PcFe可以可控地产生大量ROS,以破坏原发性肿瘤细胞并促进肿瘤相关抗原的释放,从而诱导免疫原性细胞死亡(ICD),并促进抗原呈递细胞的成熟和迁移。因此,ICD效应驱动巨噬细胞极化,增强肿瘤特异性效应T细胞的浸润,并刺激促炎细胞因子的分泌,最终形成强大的抗肿瘤免疫力,进而建立持久的免疫记忆并有效预防肿瘤复发和肺转移。这项研究表明,p-PcFe不仅能引发强大的抗肿瘤免疫反应,还能促进癌症免疫治疗的长期免疫记忆,这为设计产生活性氧的材料提供了一种有前景的按需策略,以克服免疫抑制并增强免疫原性,将“免疫冷”肿瘤转变为“免疫热”肿瘤。