文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

负载金纳米点的介孔二氧化硅纳米颗粒:用于光热免疫治疗的自增强免疫治疗储存库。

Mesoporous silica nanoparticles loaded Au nanodots: a self-amplifying immunotherapeutic depot for photothermal immunotherapy.

作者信息

Wang Chuan, Wang Dongmei, Huang Liang, An Qi

机构信息

Scientific Reasearch and Teaching Department, Public Health Clinical Center of Chengdu & Public Health Clinical Center of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.

出版信息

Front Immunol. 2025 Jun 18;16:1616539. doi: 10.3389/fimmu.2025.1616539. eCollection 2025.


DOI:10.3389/fimmu.2025.1616539
PMID:40607382
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12213700/
Abstract

INTRODUCTION: Photothermal therapy (PTT) has emerged as a highly promising approach for cancer treatment due to its advantages of localized treatment, controllable irradiation, and non-invasive nature. This study presents a multifunctional platform for tumor PTT based on Au nanoparticles-decorated mesoporous silica nanoparticles (MSN@Au), aiming to synergize photothermal ablation with immune modulation. METHODS: MSN@Au nanoparticles were engineered as the PTT agent. Photothermal efficiency was evaluated under 808 nm near-infrared (NIR) laser irradiation. Anti-tumor efficacy was systematically assessed both in vitro (tumor cell cultures) and in vivo (tumor-bearing animal models). Immune responses were analyzed by examining immunogenic cell death (ICD) induction, dendritic cell maturation, and cytotoxic T cell activation/infiltration within the tumor microenvironment (TME). RESULTS: MSN@Au demonstrated exceptional photothermal conversion efficiency under NIR irradiation, leading to significant tumor cell inhibition in both and . Mild PTT mediated by MSN@Au not only caused direct tumor cell damage but also triggered ICD. This promoted dendritic cell maturation and enhanced activation/infiltration of cytotoxic T cells within the TME, thereby amplifying anti-tumor immunity. DISCUSSION: This study underscores that the strategic design of MSN@Au as a PTT agent successfully induces ICD while modulating the immunosuppressive TME, significantly amplifying therapeutic efficacy. The integration of efficient photothermal ablation with immune activation opens new avenues for developing next-generation nanoplatforms that synergize PTT with immune modulation, offering a promising strategy for treating solid tumors.

摘要

引言:光热疗法(PTT)因其局部治疗、可控照射和非侵入性等优点,已成为一种极具前景的癌症治疗方法。本研究提出了一种基于金纳米颗粒修饰的介孔二氧化硅纳米颗粒(MSN@Au)的肿瘤光热治疗多功能平台,旨在将光热消融与免疫调节相结合。 方法:将MSN@Au纳米颗粒设计为光热治疗剂。在808nm近红外(NIR)激光照射下评估光热效率。在体外(肿瘤细胞培养)和体内(荷瘤动物模型)系统地评估抗肿瘤疗效。通过检测肿瘤微环境(TME)中免疫原性细胞死亡(ICD)诱导、树突状细胞成熟以及细胞毒性T细胞激活/浸润来分析免疫反应。 结果:MSN@Au在近红外照射下表现出卓越的光热转换效率,在体外和体内均导致显著的肿瘤细胞抑制。由MSN@Au介导的温和光热疗法不仅导致直接的肿瘤细胞损伤,还引发了ICD。这促进了树突状细胞成熟,并增强了TME中细胞毒性T细胞的激活/浸润,从而增强了抗肿瘤免疫力。 讨论:本研究强调,将MSN@Au设计为光热治疗剂的策略性设计成功诱导了ICD,同时调节了免疫抑制性TME,显著增强了治疗效果。高效光热消融与免疫激活的整合为开发将PTT与免疫调节相结合的下一代纳米平台开辟了新途径,为治疗实体瘤提供了一种有前景的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd17/12213700/0d20ffa4a9a2/fimmu-16-1616539-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd17/12213700/e4cca82b4abf/fimmu-16-1616539-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd17/12213700/b3351996a237/fimmu-16-1616539-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd17/12213700/ceffd2571016/fimmu-16-1616539-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd17/12213700/b091b89783d0/fimmu-16-1616539-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd17/12213700/2ecc0524c717/fimmu-16-1616539-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd17/12213700/5e489cbd3468/fimmu-16-1616539-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd17/12213700/c5d5d1c8f4f0/fimmu-16-1616539-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd17/12213700/0d20ffa4a9a2/fimmu-16-1616539-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd17/12213700/e4cca82b4abf/fimmu-16-1616539-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd17/12213700/b3351996a237/fimmu-16-1616539-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd17/12213700/ceffd2571016/fimmu-16-1616539-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd17/12213700/b091b89783d0/fimmu-16-1616539-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd17/12213700/2ecc0524c717/fimmu-16-1616539-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd17/12213700/5e489cbd3468/fimmu-16-1616539-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd17/12213700/c5d5d1c8f4f0/fimmu-16-1616539-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd17/12213700/0d20ffa4a9a2/fimmu-16-1616539-g007.jpg

相似文献

[1]
Mesoporous silica nanoparticles loaded Au nanodots: a self-amplifying immunotherapeutic depot for photothermal immunotherapy.

Front Immunol. 2025-6-18

[2]
Membrane-Coated Hollow Manganese Nitrogen Carbon Nanocomposites Synergize Phototherapy and STING Activation for Immunogenic Tumor Microenvironment Remodeling.

ACS Appl Mater Interfaces. 2025-6-25

[3]
Extracellular vesicles derived from mature dendritic cells loaded with cDC1-specific chemokine XCL1 combined with chemotherapy-induced ICD for the treatment of castration-resistant prostate cancer.

Cancer Immunol Immunother. 2025-6-18

[4]
Hybrid Nanocarrier Delivers Immuno-Photothermal Therapy to Modulate Pancreatic Tumor Microenvironment.

ACS Appl Bio Mater. 2025-6-16

[5]
Synthesis of a covalently linked bismuthene-graphene heterostructure loaded with mitomycin C for combined radio-thermo-chemotherapy of triple-negative breast cancer.

J Mater Chem B. 2025-7-2

[6]
Construct an "immunogenic cell death" amplifier based on Fe-MOFs by accelerating Fe(III) reduction strategies for integration of tumor diagnosis, treatment, and prevention.

J Mater Chem B. 2025-7-2

[7]
Enhanced antitumor immunity of VNP20009-CCL2-CXCL9 via the cGAS/STING axis in osteosarcoma lung metastasis.

J Immunother Cancer. 2025-7-1

[8]
2,6-Pyridinedicarboxylic Acid Covalently Bound Polydopamine for Enhanced Tumor Photothermal Therapy in NIR-I and NIR-II.

ACS Appl Mater Interfaces. 2025-6-18

[9]
Dual-laser "808 and 1,064 nm" strategy that circumvents the Achilles' heel of photothermal therapy.

Proc Natl Acad Sci U S A. 2025-6-17

[10]
ZnO-based multifunctional nanocomposites to inhibit progression and metastasis of melanoma by eliciting antitumor immunity via immunogenic cell death.

Theranostics. 2020

本文引用的文献

[1]
High-Efficiency Gold Nanoaggregates for NIR LED-Driven Sustained Mild Photothermal Therapy Achieving Complete Tumor Eradication and Immune Enhancement.

Adv Mater. 2025-2

[2]
Nanomaterial-mediated photothermal therapy modulates tumor-associated macrophages: applications in cancer therapy.

J Mater Chem B. 2024-11-27

[3]
MMP-2 Responsive Gold Nanorods Loaded with HSP-70 siRNA for Enhanced Photothermal Tumor Therapy.

Mol Pharm. 2024-11-4

[4]
Advances in Immunomodulatory Mesoporous Silica Nanoparticles for Inflammatory and Cancer Therapies.

Biomolecules. 2024-8-25

[5]
Light-induced MOF synthesis enabling composite photothermal materials.

Nat Commun. 2024-2-7

[6]
Silicon-containing nanomedicine and biomaterials: materials chemistry, multi-dimensional design, and biomedical application.

Chem Soc Rev. 2024-2-5

[7]
Size-Dependent Transport of Nanoparticles: Implications for Delivery, Targeting, and Clearance.

ACS Nano. 2023-11-14

[8]
Leveraging Coupling Effect-Enhanced Surface Plasmon Resonance of Ruthenium Nanocrystal-Decorated Mesoporous Silica Nanoparticles for Boosted Photothermal Immunotherapy.

Adv Healthc Mater. 2023-12

[9]
A local water molecular-heating strategy for near-infrared long-lifetime imaging-guided photothermal therapy of glioblastoma.

Nat Commun. 2023-5-13

[10]
A Molybdenum Disulfide Nanozyme with Charge-Enhanced Activity for Ultrasound-Mediated Cascade-Catalytic Tumor Ferroptosis.

Angew Chem Int Ed Engl. 2023-3-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索