Luque-Gómez Ana, Barrena-Espés Daniel, García-Orduña Pilar, Pérez-García Andrea, Casado Miguel A, Munarriz Julen, Iglesias Manuel
Instituto de Síntesis Química y Catálisis Homogénea, CSIC-Universidad de Zaragoza, C/Pedro Cerbuna 12, Facultad de Ciencias, Zaragoza, 50009, Spain.
Departamento de Química Física y Analítica, Universidad de Oviedo, Avda. Julián Clavería 8, Oviedo, 33006, Spain.
Angew Chem Int Ed Engl. 2025 Sep 1;64(36):e202513522. doi: 10.1002/anie.202513522. Epub 2025 Jul 17.
The bimetallic Co(I)/Co(-I) complex [Co(CO)(κ-P,N,P-PNP)][Co(CO)] (1) has shown excellent activities in the methanolysis of hydrosilanes, surpassing the related bimetallic Co(I)/Co(-I) complex [Co(CO)(PMePh)(κ-P,N,P-PNP)][Co(CO)] (2), the Co(II) complex [Co(Cl)(κ-P,N,P-PNP)] (3), and the Co(I) complex [Co(CO)(κ-P,N,P-PNP)]Cl (4). A comprehensive DFT study of the plausible reaction mechanisms indicates that the enhanced activity of 1 can be attributed to the presence of the [Co(CO)] anion, which enables a frustrated Lewis pair (FLP) mechanism that provides a low energy pathway for the heterolytic splitting of the Si─H bond. The reaction mechanism entails the coordination of the hydrosilane to the Co(I) center upon decoordination of the amine functionality of the PNP ligand, followed by heterolytic splitting of the Si─H bond with the participation of the Co(I) and Co(-I) centers. Then, the PhSiH group at the Co(-I) center is transferred to the oxygen atom of a methanol molecule, which affords the [HSiPh(HOMe)] cation, regenerating the [Co(CO)] species. [HSiPh(HOMe)] protonates the hydride at the Co(I) center, leading to the formation of H and the corresponding silyl ether. Alternative reaction pathways, including alternative ionic mechanisms or NH-assisted bifunctional mechanisms, result in higher activation energies.
双金属Co(I)/Co(-I)配合物[Co(CO)(κ-P,N,P-PNP)][Co(CO)] (1)在硅烷的甲醇解反应中表现出优异的活性,超过了相关的双金属Co(I)/Co(-I)配合物[Co(CO)(PMePh)(κ-P,N,P-PNP)][Co(CO)] (2)、Co(II)配合物[Co(Cl)(κ-P,N,P-PNP)] (3)和Co(I)配合物[Co(CO)(κ-P,N,P-PNP)]Cl (4)。对可能的反应机理进行的全面密度泛函理论(DFT)研究表明,1的活性增强可归因于[Co(CO)]阴离子的存在,它能实现一种受阻路易斯对(FLP)机理,为Si─H键的异裂提供了一条低能量途径。反应机理包括在PNP配体的胺官能团脱配位后,硅烷与Co(I)中心配位,然后在Co(I)和Co(-I)中心的参与下进行Si─H键的异裂。接着,Co(-I)中心的PhSiH基团转移到甲醇分子的氧原子上,生成[HSiPh(HOMe)]阳离子,使[Co(CO)]物种再生。[HSiPh(HOMe)]使Co(I)中心的氢化物质子化,导致H的形成和相应的硅醚。包括替代离子机理或NH辅助双功能机理在内的其他反应途径会导致更高的活化能。