Sharma Vivek Kumar
Department of Pharmacology, Government College of Pharmacy, Rohru, Shimla, Himachal Pradesh, 171207, India.
Neuromolecular Med. 2025 Jul 3;27(1):50. doi: 10.1007/s12017-025-08870-0.
Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease, is a neurodegenerative disorder marked by the progressive degeneration of motor neurons in the brain and spinal cord. Despite decades of research, ALS remains incurable, diagnostically elusive, and is accompanied by rapid clinical decline, morbidity, and mortality. Its pathophysiology involves a complex interplay of genetic mutations (SOD1, C9/f72), environmental triggers, oxidative stress, neuroinflammation, and the accumulation of misfolded proteins, such as TDP-43 and SOD1. These factors disrupt cellular homeostasis aggravates excitotoxicity and neuronal death. Existing treatments, such as riluzole (a glutamate release modulator) and edaravone (a free radical scavenger), offer limited benefits, modestly prolonging survival or slowing functional decline without halting progression. Investigational approaches include antisense oligonucleotides targeting mutant SOD1 or C9orf72 genes, stem cell-based motor neuron replacement, and biomarker discovery to enable earlier diagnosis and progression monitoring. ALS patients frequently exhibit gastrointestinal (GI) symptoms, including dysphagia, sialorrhea, constipation, delayed gastric emptying, and pancreatic/parotid deficiencies. These observations underscore a close association between GI dysfunction and ALS pathogenesis. Also, recent studies implicate the gut-brain-microbiota axis in disease evolution, with microbial metabolites influencing neuroimmune interactions, synaptic plasticity, myelination, and skeletal muscle function. These studies indicate that dysbiosis-an imbalance in gut microbiota-may have a crucial role in ALS progression by impairing intestinal barrier integrity, promoting endotoxemia, and driving systemic inflammation. Conversely, ALS progression itself worsens dysbiosis, creating a vicious cycle of neuroinflammation and neurodegeneration. Preclinical and clinical evidence suggests that interventions targeting gut microbiota-such as prebiotics, probiotics, antibiotics, or phage therapy-could alleviate symptoms and slow disease progression and specific probiotic strains have also shown promise in reducing oxidative stress and inflammation in animal models. These findings highlight the urgent need to elucidate the functional role of gut microbiota in ALS to unlock novel diagnostic and therapeutic avenues. This review synthesizes current knowledge on the pathophysiology of ALS, with a focus on the emerging role of the gut-brain-microbiota axis. It highlights how dysbiosis influences diverse disease markers and neurodegenerative mechanisms, offering insights into potential therapeutic strategies and identifying key research gaps and future directions.
肌萎缩侧索硬化症(ALS),也被称为卢伽雷氏病,是一种神经退行性疾病,其特征是大脑和脊髓中的运动神经元进行性退化。尽管经过了数十年的研究,ALS仍然无法治愈,诊断困难,并且伴随着快速的临床衰退、发病和死亡。其病理生理学涉及基因突变(SOD1、C9orf72)、环境触发因素、氧化应激、神经炎症以及错误折叠蛋白(如TDP - 43和SOD1)的积累之间的复杂相互作用。这些因素破坏细胞内稳态,加剧兴奋性毒性和神经元死亡。现有的治疗方法,如利鲁唑(一种谷氨酸释放调节剂)和依达拉奉(一种自由基清除剂),益处有限,只能适度延长生存期或减缓功能衰退,而无法阻止疾病进展。研究方法包括针对突变SOD1或C9orf72基因的反义寡核苷酸、基于干细胞的运动神经元替代以及生物标志物发现,以实现早期诊断和疾病进展监测。ALS患者经常出现胃肠道(GI)症状,包括吞咽困难、流涎、便秘、胃排空延迟以及胰腺/腮腺功能缺陷。这些观察结果强调了胃肠功能障碍与ALS发病机制之间的密切关联。此外,最近的研究表明肠 - 脑 - 微生物群轴在疾病发展中起作用,微生物代谢产物影响神经免疫相互作用、突触可塑性、髓鞘形成和骨骼肌功能。这些研究表明,生态失调——肠道微生物群失衡——可能通过损害肠道屏障完整性、促进内毒素血症和引发全身炎症,在ALS进展中起关键作用。相反,ALS进展本身会加剧生态失调,形成神经炎症和神经退行性变的恶性循环。临床前和临床证据表明,针对肠道微生物群的干预措施,如益生元、益生菌、抗生素或噬菌体疗法,可以缓解症状并减缓疾病进展,特定的益生菌菌株在动物模型中也显示出降低氧化应激和炎症的前景。这些发现凸显了迫切需要阐明肠道微生物群在ALS中的功能作用,以开辟新的诊断和治疗途径。这篇综述综合了目前关于ALS病理生理学的知识,重点关注肠 - 脑 - 微生物群轴的新作用。它强调了生态失调如何影响多种疾病标志物和神经退行性机制,为潜在的治疗策略提供见解,并确定关键的研究差距和未来方向。