Suppr超能文献

决策树和线性判别分析辅助设计基于聚多巴胺纳米颗粒的比色阵列传感器,该传感器由金属离子调制用于高效检测生理磷酸盐。

Decision Tree and Linear Discriminant Analysis-Assisted Design of Polydopamine Nanoparticle-Based Colorimetric Array Sensor Modulated by Metal Ions for High-Efficiency Detection of Physiological Phosphates.

作者信息

Lin Xin, Zhao Dan, Jin Jiafei, Yu Qi, Gao Qi, Xu Yixin, Yang Mei

机构信息

College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, Liaoning 116029, China.

出版信息

Anal Chem. 2025 Jul 15;97(27):14446-14454. doi: 10.1021/acs.analchem.5c01676. Epub 2025 Jul 3.

Abstract

Physiological phosphates play a crucial role in various mechanisms of biological processes and diseases. Their interconversion through enzymatic reactions reveals the importance of developing efficient methods for evaluating physiological phosphates and their complex mixtures. Herein, we prepared three polydopamine nanoparticles (PDA NPs) with various surface modifications via Michael addition reactions between dopamine and different biothiols. A high-dimensional dual-signal array sensor comprising three PDA NPs, nine metal ions, and 3,3',5,5'-tetramethylbenzidine (TMB) was preliminarily designed. Decision tree and linear discrimination analysis (LDA) algorithms were employed as core design tools to identify the most effective sensing units, enabling the development of a streamlined N-acetyl-l-cysteine PDA NPs (N-PDA NPs)-Fe, Ag, Hg-TMB colorimetric array sensor for phosphates analysis. Competitive binding between phosphates and N-PDA NPs with metal ions induced differential changes in the amount of TMB oxidation product (oxTMB), generating unique fingerprint response patterns. This sensor successfully discriminated seven phosphates (ATP, ADP, AMP, PPi, HPO, HPO, and Pi) at equal concentrations as well as common phosphates at varying concentrations and their mixtures. A broader range of phosphate species quantification and unknown phosphates accurate prediction validated sensor's robustness. Notably, the sensor realized the monitoring of kinase activity involving phosphates. The 100% discrimination of phosphates from common interfering substances and complete differentiation of them in complex matrix demonstrated sensor's high selectivity. The recovery rate for phosphate in spiked serum ranged from 96% to 114%. More importantly, this study represented the first successful establishment of an intuitive evaluation model for serum phosphate levels, highlighting potential for diagnosing phosphate-related diseases.

摘要

生理磷酸盐在生物过程和疾病的各种机制中起着至关重要的作用。它们通过酶促反应的相互转化揭示了开发评估生理磷酸盐及其复杂混合物的有效方法的重要性。在此,我们通过多巴胺与不同生物硫醇之间的迈克尔加成反应制备了三种具有不同表面修饰的聚多巴胺纳米颗粒(PDA NPs)。初步设计了一种由三种PDA NPs、九种金属离子和3,3',5,5'-四甲基联苯胺(TMB)组成的高维双信号阵列传感器。决策树和线性判别分析(LDA)算法被用作核心设计工具来识别最有效的传感单元,从而开发出一种简化的用于磷酸盐分析的N-乙酰-L-半胱氨酸PDA NPs(N-PDA NPs)-Fe、Ag、Hg-TMB比色阵列传感器。磷酸盐与N-PDA NPs和金属离子之间的竞争性结合导致TMB氧化产物(oxTMB)量的差异变化,产生独特的指纹响应模式。该传感器成功区分了七种等浓度的磷酸盐(ATP、ADP、AMP、PPi、HPO、HPO和Pi)以及不同浓度的常见磷酸盐及其混合物。更广泛的磷酸盐种类定量和未知磷酸盐的准确预测验证了传感器的稳健性。值得注意的是,该传感器实现了对涉及磷酸盐的激酶活性的监测。该传感器对磷酸盐与常见干扰物质的100%区分以及在复杂基质中的完全区分证明了其高选择性。加标血清中磷酸盐的回收率在96%至114%之间。更重要的是,这项研究首次成功建立了血清磷酸盐水平的直观评估模型,突出了诊断磷酸盐相关疾病的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验