Suppr超能文献

联网自动驾驶车辆在雾天高速公路上降低跟车风险和能耗的控制策略

Control strategy for connected automated vehicles to reduce car-following risks and energy consumption on foggy highway.

作者信息

Chen Rui, He Xiaolei

机构信息

China Huaneng Group Co., Ltd., Beijing, China.

Jiangsu Huaneng Smart Energy Supply Chain Technology Co., Ltd., Nanjing, China.

出版信息

PLoS One. 2025 Jul 3;20(7):e0326118. doi: 10.1371/journal.pone.0326118. eCollection 2025.

Abstract

The foggy environment negatively affects car-following behavior, increasing rear-end collisions and energy consumption (including fuel consumption and traffic emissions). With advancements in technologies, connected automated vehicles (CAVs) are gradually replacing human-driven vehicles (HDVs) and becoming an integral part of transportation systems. The advent of CAVs offers a new approach to reducing car-following risks and energy consumption in foggy conditions. This study develops a fog-adaptive control framework for CAVs in foggy weather to mitigate car-following risks and reduce energy consumption. First, a foggy-weather car-following model, calibrated using driving simulator data, was selected to describe the behavior of HDVs in foggy highway conditions. Then, based on the model predictive control (MPC) theory, a CAV control strategy was proposed to minimize car-following risks and energy consumption in foggy weather. Finally, a simulation-based verification paradigm was established to assess objectives of risk reduction and energy saving under the proposed CAV strategy in mixed traffic. The results show that car-following risks and energy consumption vary under different fog densities and speed limit conditions. The proposed CAV control strategy can effectively reduce car-following risks by suppressing speed fluctuations, thereby lowering energy consumption in foggy mixed vehicular streams. At a 100% CAV penetration rate, the average reductions in various scenarios of fog density and speed limit conditions are as follows: ITC by 80.74%, DRAC by 59.44%, fuel consumption by 27.62%, CO2 emissions by 27.62%, CO emissions by 9.57%, HC emissions by 6.21%, and NOx emissions by 11.55%.

摘要

雾天环境会对跟车行为产生负面影响,增加追尾碰撞事故和能源消耗(包括燃油消耗和交通排放)。随着技术的进步,联网自动驾驶车辆(CAV)正逐渐取代人类驾驶车辆(HDV),并成为交通系统的重要组成部分。CAV的出现为降低雾天条件下的跟车风险和能源消耗提供了一种新方法。本研究针对雾天中的CAV开发了一种雾适应控制框架,以降低跟车风险并减少能源消耗。首先,选择一个通过驾驶模拟器数据校准的雾天跟车模型,来描述雾天高速公路条件下HDV的行为。然后,基于模型预测控制(MPC)理论,提出了一种CAV控制策略,以最小化雾天条件下的跟车风险和能源消耗。最后,建立了一个基于仿真的验证范式,以评估在混合交通中所提出的CAV策略下的风险降低和节能目标。结果表明,在不同的雾密度和速度限制条件下,跟车风险和能源消耗有所不同。所提出的CAV控制策略可以通过抑制速度波动来有效降低跟车风险,从而降低雾天混合车流中的能源消耗。在CAV渗透率为100%时,在各种雾密度和速度限制条件场景下的平均降低幅度如下:碰撞时间(ITC)降低80.74%,期望到达时间(DRAC)降低59.44%,燃油消耗降低27.62%,二氧化碳排放降低27.62%,一氧化碳排放降低9.57%,碳氢化合物排放降低6.21%,氮氧化物排放降低11.55%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e40b/12225869/89f3c4549c6d/pone.0326118.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验