Sobral Milo, Jourde Hugo R, Ehsan M Bajestani S, Coffey Emily B J, Beltrame Giovanni
Department of Computer and Software Engineering, Polytechnique Montreal, Montreal, Canada.
Department of Psychology, Concordia University, Montreal, Canada.
J Neural Eng. 2025 Jul 15;22(4). doi: 10.1088/1741-2552/adebb1.
Personalized stimulation, in which algorithms used to detect neural events adapt to a user's unique neural characteristics, may be crucial to enable optimized and consistent stimulation quality for both fundamental research and clinical applications. Precise stimulation of sleep spindles-transient patterns of brain activity that occur during non rapid eye movement sleep that are involved in memory consolidation-presents an exciting frontier for studying memory functions; however, this endeavour is challenged by the spindles' fleeting nature, inter-individual variability, and the necessity of real-time detection.We tackle these challenges using a novel continual learning framework. Using a pre-trained model capable of both online classification of sleep stages and spindle detection, we implement an algorithm that refines spindle detection, tailoring it to the individual throughout one or more nights without manual intervention.Our methodology achieves accurate, subject-specific targeting of sleep spindles and enables advanced closed-loop stimulation studies. While fine-tuning alone offers minimal benefits for single nights, our approach combining weight averaging demonstrates significant improvement over multiple nights, effectively mitigating catastrophic forgetting.This work represents an important step towards signal-level personalization of brain stimulation that can be applied to different brain stimulation paradigms including closed-loop brain stimulation, and to different neural events. Applications in fundamental neuroscience may enhance the investigative potential of brain stimulation to understand cognitive processes such as the role of sleep spindles in memory consolidation, and may lead to novel therapeutic applications.
个性化刺激,即用于检测神经事件的算法适应用户独特的神经特征,对于在基础研究和临床应用中实现优化且一致的刺激质量可能至关重要。精确刺激睡眠纺锤波——非快速眼动睡眠期间出现的短暂脑电活动模式,与记忆巩固有关——是研究记忆功能的一个令人兴奋的前沿领域;然而,这一努力受到纺锤波转瞬即逝的性质、个体间差异以及实时检测必要性的挑战。我们使用一种新颖的持续学习框架来应对这些挑战。利用一个能够对睡眠阶段进行在线分类和纺锤波检测的预训练模型,我们实现了一种算法,该算法可以优化纺锤波检测,在无需人工干预的情况下,针对个体在一个或多个夜晚进行调整。我们的方法实现了对睡眠纺锤波的准确、针对个体的靶向,并能够进行先进的闭环刺激研究。虽然单独微调对单个夜晚的益处不大,但我们结合权重平均的方法在多个夜晚显示出显著改善,有效减轻了灾难性遗忘。这项工作代表了朝着脑刺激信号水平个性化迈出的重要一步,可应用于不同的脑刺激范式,包括闭环脑刺激,以及不同的神经事件。在基础神经科学中的应用可能会增强脑刺激理解认知过程(如睡眠纺锤波在记忆巩固中的作用)的研究潜力,并可能带来新的治疗应用。