文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于中心体相关基因构建肺腺癌预后特征并刻画肿瘤微环境

Developing a prognostic signature and characterizing the tumor microenvironment based on centrosome-related genes in lung adenocarcinoma.

作者信息

Xu Lingjie, Xia Yiqin, Qin Qin, Wang Guiqun, Tao Kai, Wei Wei

机构信息

Department of Emergency, West China Hospital, Sichuan University, Chengdu, 610041, China.

West China School of Medicine, Sichuan University, Chengdu, 610041, China.

出版信息

Oncol Res. 2025 Jun 26;33(7):1649-1666. doi: 10.32604/or.2025.056176. eCollection 2025.


DOI:10.32604/or.2025.056176
PMID:40612866
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12215551/
Abstract

BACKGROUND: The centrosome, a crucial cellular structure involved in the mitotic process of eukaryotic cells, plays a significant role in tumor progression by regulating the growth and differentiation of neoplastic cells. This makes the centrosome a promising target for therapeutic strategies in cancer treatment. METHODS: Utilizing data from the TCGA database, we identified centrosome-related genes and constructed a prognostic model for 518 lung adenocarcinoma patients. Prognosis-associated genes were initially screened using univariate Cox regression, with overfitting minimized by applying LASSO regression to remove collinearity. Finally, a set of 12 genes was selected through multivariable Cox regression for inclusion in the prognostic model. RESULTS: The model's performance was assessed using ROC curve analysis, demonstrating a robust predictive ability with an AUC of 0.728 in the training group and 0.695 in the validation group. Differential expression analysis between high-risk (HRLAs) and low-risk (LRLAs) individuals was performed, followed by enrichment analyses using KEGG, GO, Progeny, GSVA, and GSEA. These analyses revealed significant differences in immune-related pathways between the two groups. Immune microenvironment assessment through ssGSEA and ESTIMATE indicated that individuals with poor prognosis exhibited lower immune, stromal, and ESTIMATE scores, along with higher tumor purity, suggesting an impaired immune microenvironment in HRLAs patients. Drug susceptibility analysis and molecular docking showed that HRLAs individuals were more responsive to docetaxel, emphasizing the therapeutic relevance of paclitaxel in this cohort. CONCLUSION: We successfully developed and validated a centrosome-associated gene-based prognostic model, offering clinicians valuable insights for improved decision-making and personalized treatment strategies. This model may facilitate the identification of high-risk patients and guide therapeutic interventions in lung adenocarcinoma.

摘要

背景:中心体是真核细胞有丝分裂过程中至关重要的细胞结构,通过调节肿瘤细胞的生长和分化在肿瘤进展中发挥重要作用。这使得中心体成为癌症治疗中治疗策略的一个有前景的靶点。 方法:利用TCGA数据库的数据,我们鉴定了与中心体相关的基因,并为518例肺腺癌患者构建了一个预后模型。首先使用单变量Cox回归筛选与预后相关的基因,通过应用LASSO回归消除共线性来最小化过拟合。最后,通过多变量Cox回归选择一组12个基因纳入预后模型。 结果:使用ROC曲线分析评估模型的性能,在训练组中AUC为0.728,在验证组中为0.695,显示出强大的预测能力。对高风险(HRLAs)和低风险(LRLAs)个体进行差异表达分析,随后使用KEGG、GO、Progeny、GSVA和GSEA进行富集分析。这些分析揭示了两组之间免疫相关途径的显著差异。通过ssGSEA和ESTIMATE进行的免疫微环境评估表明,预后较差的个体免疫、基质和ESTIMATE评分较低,肿瘤纯度较高,这表明HRLAs患者的免疫微环境受损。药物敏感性分析和分子对接表明,HRLAs个体对多西他赛更敏感,强调了紫杉醇在该队列中的治疗相关性。 结论:我们成功开发并验证了一个基于中心体相关基因的预后模型,为临床医生提供了有价值的见解,以改善决策和个性化治疗策略。该模型可能有助于识别高风险患者并指导肺腺癌的治疗干预。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0364/12215551/e1db60a176f8/OncolRes-33-56176-f013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0364/12215551/e1c9c6a78992/OncolRes-33-56176-f001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0364/12215551/ba8ad1ab340d/OncolRes-33-56176-f002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0364/12215551/ba772743b1c5/OncolRes-33-56176-f003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0364/12215551/5a6e036cda1e/OncolRes-33-56176-f004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0364/12215551/976f7597c152/OncolRes-33-56176-f005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0364/12215551/da32a70fb1a8/OncolRes-33-56176-f006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0364/12215551/52460623d1e1/OncolRes-33-56176-f007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0364/12215551/9be3e3f2b1db/OncolRes-33-56176-f008a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0364/12215551/3ebf0a05314d/OncolRes-33-56176-f009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0364/12215551/23dc892b529c/OncolRes-33-56176-f010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0364/12215551/710f34e99d35/OncolRes-33-56176-f011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0364/12215551/3ca28ac8e1be/OncolRes-33-56176-f012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0364/12215551/e1db60a176f8/OncolRes-33-56176-f013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0364/12215551/e1c9c6a78992/OncolRes-33-56176-f001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0364/12215551/ba8ad1ab340d/OncolRes-33-56176-f002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0364/12215551/ba772743b1c5/OncolRes-33-56176-f003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0364/12215551/5a6e036cda1e/OncolRes-33-56176-f004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0364/12215551/976f7597c152/OncolRes-33-56176-f005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0364/12215551/da32a70fb1a8/OncolRes-33-56176-f006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0364/12215551/52460623d1e1/OncolRes-33-56176-f007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0364/12215551/9be3e3f2b1db/OncolRes-33-56176-f008a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0364/12215551/3ebf0a05314d/OncolRes-33-56176-f009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0364/12215551/23dc892b529c/OncolRes-33-56176-f010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0364/12215551/710f34e99d35/OncolRes-33-56176-f011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0364/12215551/3ca28ac8e1be/OncolRes-33-56176-f012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0364/12215551/e1db60a176f8/OncolRes-33-56176-f013.jpg

相似文献

[1]
Developing a prognostic signature and characterizing the tumor microenvironment based on centrosome-related genes in lung adenocarcinoma.

Oncol Res. 2025-6-26

[2]
Unraveling the role of GPCR signaling in metabolic reprogramming and immune microenvironment of lung adenocarcinoma: a multi-omics study with experimental validation.

Front Immunol. 2025-6-6

[3]
Comprehensive analysis of RFC4 as a potential biomarker for regulating the immune microenvironment and predicting immune therapy response in lung adenocarcinoma.

Front Immunol. 2025-6-19

[4]
Prognostic model of lung adenocarcinoma based on disulfidptosis-related genes and analysis of in vitro cell experiments for PPP1R14B in the model.

Biol Direct. 2025-7-1

[5]
Development and validation of a basement membrane inflammatory response gene signature in lung adenocarcinoma.

Sci Rep. 2025-7-1

[6]
Risk scoring model for lung adenocarcinoma based on PD-L1 related signature reveals prognostic predictability and correlation with tumor immune microenvironment genes was constructed.

Front Immunol. 2025-6-11

[7]
Development of a machine learning-derived dendritic cell signature for prognostic stratification in lung adenocarcinoma.

Front Immunol. 2025-6-9

[8]
Identification and validation of a KRAS-macrophage-associated gene signature as prognostic biomarkers and potential therapeutic targets in melanoma.

Front Immunol. 2025-6-18

[9]
Liquid-Liquid Phase Separation in the Prognosis of Lung Adenocarcinoma: An Integrated Analysis.

Curr Cancer Drug Targets. 2025

[10]
Bioinformatics identification and validation of m6A/m1A/m5C/m7G/ac4 C-modified genes in oral squamous cell carcinoma.

BMC Cancer. 2025-7-1

本文引用的文献

[1]
Cockayne syndrome group A protein localizes at centrosomes during mitosis and regulates Cyclin B1 ubiquitination.

Eur J Cell Biol. 2023-6

[2]
Identification of a centrosome-related prognostic signature for breast cancer.

Front Oncol. 2023-3-22

[3]
Docetaxel remodels prostate cancer immune microenvironment and enhances checkpoint inhibitor-based immunotherapy.

Theranostics. 2022

[4]
Ccl3 enhances docetaxel chemosensitivity in breast cancer by triggering proinflammatory macrophage polarization.

J Immunother Cancer. 2022-5

[5]
Abiraterone plus prednisone added to androgen deprivation therapy and docetaxel in de novo metastatic castration-sensitive prostate cancer (PEACE-1): a multicentre, open-label, randomised, phase 3 study with a 2 × 2 factorial design.

Lancet. 2022-4-30

[6]
Cancer statistics, 2022.

CA Cancer J Clin. 2022-1

[7]
Tumor purity as a prognosis and immunotherapy relevant feature in cervical cancer.

Aging (Albany NY). 2021-11-29

[8]
The 2021 WHO Classification of Lung Tumors: Impact of Advances Since 2015.

J Thorac Oncol. 2022-3

[9]
Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives.

Mol Cancer. 2021-10-11

[10]
Immune checkpoint inhibitors in melanoma.

Lancet. 2021-9-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索