Suppr超能文献

基于定量磁化率图识别脑海绵状血管畸形中既往出血的特征:一项机器学习初步研究

Identifying features of prior hemorrhage in cerebral cavernous malformations on quantitative susceptibility maps: a machine learning pilot study.

作者信息

Kinkade Serena, Li Hui, Hage Stephanie, Koskimäki Janne, Stadnik Agnieszka, Lee Justine, Shenkar Robert, Papaioannou John, Flemming Kelly D, Kim Helen, Torbey Michel, Huang Judy, Carroll Timothy J, Girard Romuald, Giger Maryellen L, Awad Issam A

机构信息

Departments of1Neurological Surgery and.

2Diagnostic Radiology, University of Chicago Medicine and Biological Sciences, Chicago, Illinois.

出版信息

J Neurosurg. 2025 Jul 4:1-8. doi: 10.3171/2025.3.JNS243051.

Abstract

Features of new bleeding on conventional imaging in cerebral cavernous malformations (CCMs) often disappear after several weeks, yet the risk of rebleeding persists long thereafter. Increases in mean lesional quantitative susceptibility mapping (QSM) ≥ 6% on MRI during 1 year of prospective surveillance have been associated with new symptomatic hemorrhage (SH) during that period. The authors hypothesized that QSM at a single time point reflects features of hemorrhage in the prior year or potential bleeding in the subsequent year. Twenty-eight features were extracted from 265 QSM acquisitions in 120 patients enrolled in a prospective trial readiness project, and machine learning methods examined associations with SH and biomarker bleed (QSM increase ≥ 6%) in prior and subsequent years. QSM features including sum variance, variance, and correlation had lower average values in lesions with SH in the prior year (p < 0.05, false discovery rate corrected). A support-vector machine classifier recurrently selected sum average, mean lesional QSM, sphericity, and margin sharpness features to distinguish biomarker bleeds in the prior year (area under the curve = 0.61, 95% CI 0.52-0.70; p = 0.02). No QSM features were associated with a subsequent bleed. These results provide proof of concept that machine learning may derive features of QSM reflecting prior hemorrhagic activity, meriting further investigation. Clinical trial registration no.: NCT03652181 (ClinicalTrials.gov).

摘要

脑海绵状血管畸形(CCM)中传统成像上新出血的特征通常在几周后消失,但再出血风险在此后很长时间内持续存在。在前瞻性监测的1年中,MRI上平均病变定量磁化率映射(QSM)增加≥6%与该期间新的症状性出血(SH)相关。作者推测,单个时间点的QSM反映了前一年的出血特征或下一年的潜在出血情况。从参与前瞻性试验准备项目的120例患者的265次QSM采集数据中提取了28个特征,并采用机器学习方法研究了与前一年和后一年的SH及生物标志物出血(QSM增加≥6%)的相关性。在前一年发生SH的病变中,包括总和方差、方差和相关性在内的QSM特征的平均值较低(p<0.05,经错误发现率校正)。支持向量机分类器反复选择总和平均值、平均病变QSM、球形度和边缘清晰度特征来区分前一年的生物标志物出血(曲线下面积=0.61,95%CI 0.52-0.70;p=0.02)。没有QSM特征与随后的出血相关。这些结果提供了概念验证,即机器学习可能得出反映先前出血活动的QSM特征,值得进一步研究。临床试验注册号:NCT03652181(ClinicalTrials.gov)。

相似文献

3
Quantitative susceptibility mapping in multiple sclerosis: A systematic review and meta-analysis.
Neuroimage Clin. 2024;42:103598. doi: 10.1016/j.nicl.2024.103598. Epub 2024 Mar 25.
5
Magnetic resonance perfusion for differentiating low-grade from high-grade gliomas at first presentation.
Cochrane Database Syst Rev. 2018 Jan 22;1(1):CD011551. doi: 10.1002/14651858.CD011551.pub2.
6
QSM predicts haemorrhage risk in brainstem cavernous malformations: a multicentre prospective study.
J Neurol Neurosurg Psychiatry. 2025 Jun 18. doi: 10.1136/jnnp-2025-336149.
10
Prognosis of adults and children following a first unprovoked seizure.
Cochrane Database Syst Rev. 2023 Jan 23;1(1):CD013847. doi: 10.1002/14651858.CD013847.pub2.

本文引用的文献

1
Contemporary cohort of cerebral cavernous malformations: natural history and utility of follow-up MRI.
J Neurosurg. 2024 May 24;141(5):1159-1167. doi: 10.3171/2024.2.JNS232750. Print 2024 Nov 1.
2
Trial Readiness of Cavernous Malformations With Symptomatic Hemorrhage, Part I: Event Rates and Clinical Outcome.
Stroke. 2024 Jan;55(1):22-30. doi: 10.1161/STROKEAHA.123.044068. Epub 2023 Dec 22.
3
Trial Readiness of Cavernous Malformations With Symptomatic Hemorrhage, Part II: Biomarkers and Trial Modeling.
Stroke. 2024 Jan;55(1):31-39. doi: 10.1161/STROKEAHA.123.044083. Epub 2023 Dec 22.
5
Subclinical imaging changes in cerebral cavernous angiomas during prospective surveillance.
J Neurosurg. 2020 Apr 3;134(3):1147-1154. doi: 10.3171/2020.1.JNS193479. Print 2021 Mar 1.
7
Quantitative MRI radiomics in the prediction of molecular classifications of breast cancer subtypes in the TCGA/TCIA data set.
NPJ Breast Cancer. 2016;2:16012-. doi: 10.1038/npjbcancer.2016.12. Epub 2016 May 11.
8
Vascular permeability and iron deposition biomarkers in longitudinal follow-up of cerebral cavernous malformations.
J Neurosurg. 2017 Jul;127(1):102-110. doi: 10.3171/2016.5.JNS16687. Epub 2016 Aug 5.
9
Quantitative Susceptibility Mapping in Cerebral Cavernous Malformations: Clinical Correlations.
AJNR Am J Neuroradiol. 2016 Jul;37(7):1209-15. doi: 10.3174/ajnr.A4724. Epub 2016 Mar 10.
10
Clinical course of untreated cerebral cavernous malformations: a meta-analysis of individual patient data.
Lancet Neurol. 2016 Feb;15(2):166-173. doi: 10.1016/S1474-4422(15)00303-8. Epub 2015 Dec 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验