Mei Janet, Salim Hamza Adel, Lakhani Dhairya A, Balar Aneri, Vagal Vaibhav, Koneru Manisha, Wolman Dylan, Xu Risheng, Urrutia Victor, Marsh Elisabeth Breese, Pulli Benjamin, Hoseinyazdi Meisam, Luna Licia, Deng Francis, Hyson Nathan Z, Shahriari Mona, Dmytriw Adam A, Guenego Adrien, Albers Gregory W, Lu Hanzhang, Nael Kambiz, Hillis Argye E, Llinas Raf, Wintermark Max, Faizy Tobias D, Heit Jeremy J, Yedavalli Vivek
Department of Radiology, Division of Neuroradiology, Johns Hopkins Medical Center, Baltimore, MD, USA.
Department of Neuroradiology, MD Anderson Medical Center, Houston, TX 77030, USA; Department of Radiology, Division of Neuroradiology, Johns Hopkins Medical Center, Baltimore, MD, USA.
Neurotherapeutics. 2025 Jul 5:e00632. doi: 10.1016/j.neurot.2025.e00632.
Arterial inflow restoration and collateral status have been significantly correlated with functional outcomes in AIS-LVO patients undergoing mechanical thrombectomy (MT). CT perfusion imaging biomarkers, including prolonged venous transit (PVT), cerebral blood volume (CBV) index, and hypoperfusion intensity ratio (HIR), have emerged as reliable pretreatment adjunct parameters of comprehensive flow assessment. However, their absolute and comparative effectiveness in improving prognostic prediction remains unclear when used in conjunction with clinical and arterial inflow parameters. In our prospectively maintained database, we retrospectively reviewed and analyzed 149 patients with anterior circulation AIS-LVO who underwent MT. PVT was defined as Tmax ≥10 s timing within the superior sagittal sinus, torcula, or both, where PVT-was considered favorable. CBV index and HIR were derived from automated CTP software and analyzed in both continuous and dichotomized forms (HIR <0.4 and CBV index ≥0.8 represented favorable collaterals). A baseline logistic regression model incorporating significant clinical parameters and arterial inflow information was built first. PVT, CBV index, and HIR were subsequently incorporated individually and then in combination. Model performance was assessed using receiver operating characteristic analysis and compared by Delong's tests.PVT+ was associated with a significantly higher likelihood of unfavorable 90-day modified Rankin Scale outcomes (47.9 % vs. 16.7 %, p < 0.01). Incorporating PVT into a baseline model comprised of significant clinical and arterial inflow parameters (age, hypertension, NIHSS, and mTICI score) improved outcome prediction (AUC: 0.821 [95%CI 0.749-0.879]), outperforming models incorporating CBV index (AUC: 0.792 [95%CI 0.718-0.854] and 0.799 [95%CI 0.725-0.860] in continuous and dichotomized forms, respectively) or HIR (AUC: 0.789 [95%CI 0.715-0.852] and 0.789 [95%CI 0.714-0.851] in continuous and dichotomized forms, respectively). The highest predictive accuracy was achieved by combining PVT with dichotomized CBV index, significantly outperforming the baseline model (AUC: 0.831 [95%CI 0.761-0.887] vs. 0.780 [95%CI 0.705-0.843], p = 0.04).The combination of PVT and CBV index in conjunction with well-established clinical and interventional parameters significantly enhances predictive accuracy. This comprehensive imaging and clinical model offers potential utility for outcome stratification and clinical decision-making. Furthermore, PVT is a stronger predictor of functional outcomes in AIS-LVO patients than CBV index or HIR, highlighting the importance of VO assessment in stroke prognosis. However, prospective studies are necessary for further evaluation of the strength of these findings.
动脉血流恢复和侧支循环状态与接受机械取栓(MT)的急性缺血性卒中伴大血管闭塞(AIS-LVO)患者的功能结局显著相关。CT灌注成像生物标志物,包括静脉通过时间延长(PVT)、脑血容量(CBV)指数和低灌注强度比(HIR),已成为综合血流评估可靠的预处理辅助参数。然而,当与临床和动脉血流参数联合使用时,它们在改善预后预测方面的绝对和比较有效性仍不明确。在我们前瞻性维护的数据库中,我们回顾性分析了149例接受MT的前循环AIS-LVO患者。PVT定义为上矢状窦、窦汇或两者内Tmax≥10秒的时间,PVT-被认为是有利的。CBV指数和HIR来自自动CTP软件,并以连续和二分法形式进行分析(HIR<0.4且CBV指数≥0.8表示侧支循环良好)。首先建立了一个纳入显著临床参数和动脉血流信息的基线逻辑回归模型。随后分别单独纳入并联合纳入PVT、CBV指数和HIR。使用受试者工作特征分析评估模型性能,并通过德龙检验进行比较。PVT+与90天改良Rankin量表不良结局的可能性显著更高相关(47.9%对16.7%,p<0.01)。将PVT纳入由显著临床和动脉血流参数(年龄、高血压、美国国立卫生研究院卒中量表评分和改良脑梗死溶栓分级[mTICI]评分)组成的基线模型中可改善结局预测(曲线下面积[AUC]:0.821[95%置信区间0.749-0.879]),优于纳入CBV指数(连续和二分法形式的AUC分别为0.792[95%置信区间0.718-0.854]和0.799[95%置信区间0.725-0.860])或HIR(连续和二分法形式的AUC分别为0.789[95%置信区间0.715-0.852]和0.789[95%置信区间0.714-0.851])的模型。通过将PVT与二分法CBV指数相结合实现了最高的预测准确性,显著优于基线模型(AUC:0.831[95%置信区间0.761-0.887]对0.780[95%置信区间0.705-0.843],p=0.04)。PVT和CBV指数与成熟的临床和介入参数相结合可显著提高预测准确性。这种综合成像和临床模型为结局分层和临床决策提供了潜在效用。此外,在AIS-LVO患者中,PVT比CBV指数或HIR是更强的功能结局预测指标,突出了静脉闭塞评估在卒中预后中的重要性。然而,需要进行前瞻性研究以进一步评估这些发现的强度。