Pan Li, Xiao Xiangming, Qin Yuanwei, Canadell Josep G, Huete Alfredo, Ciais Philippe, Yin Shenglai, Zhang Chenchen, Pan Baihong, Yin Chenglong, Meng Cheng, Yao Yuan, Xia Haoming
School of Biological Sciences, Center for Earth Observation and Modeling, University of Oklahoma, Norman, Oklahoma, USA.
Jiangsu Key Laboratory of Soil and Water Processes in Watershed, College of Geography and Remote Sensing, Hohai University, Nanjing, China.
Glob Chang Biol. 2025 Jul;31(7):e70321. doi: 10.1111/gcb.70321.
Fires disrupt ecosystems, release carbon, and reduce carbon uptake, which increases atmospheric CO concentration, warms the atmosphere, and fosters more frequent and intense fires. Quantifying postfire recovery is crucial for understanding the adaptability and resilience of ecosystems to fire disturbances. Observations from satellite-derived active fire (~1-km) and Gross Primary Productivity (GPP) products reveal that Australia experiences extensive fires annually, reducing vegetation productivity. Here we analyze the post-fire GPP recovery trajectories of 1.7 × 10 fire-affected pixels (or 1.5 × 10 km) in Australia between 2011 and 2019, of which 1.3 × 10 pixels (1.2 × 10 km) experienced a single fire (single-fire pixels), and 0.4 × 10 pixels (0.3 × 10 km) experienced two or more fires (multiple-fire pixels). We found that Australia's postfire GPP recovery was strong and rapid. 88% of single-fire pixels recovered to 135% of the prefire level in an average of 2.3 years, whereas 86% of multiple-fire pixels recovered to 115% of the prefire level in an average of 1.2 years. NonForest ecosystems (e.g., grasslands, shrublands, and savannas) exhibited a higher postfire recovery magnitude (138% for single-fire pixels and 115% for multiple-fire pixels) compared to Forest (110% for single-fire pixels and 108% for multiple-fire pixels). This rapid and robust postfire GPP recovery is significantly influenced by postfire precipitation, fire (i.e., fire frequency, intensity) and fire severity (damage, impacts; a metric of resistance of terrestrial ecosystems to fire). Specifically, higher fire severity and higher postfire precipitation have a positive impact on postfire recovery, whereas increased fire frequency has a negative impact. Furthermore, fire dynamics have a smaller role in the long-term interannual continental GPP changes than climate or land-use changes, as strong and rapid GPP recovery offsets the short-term fire-induced GPP losses.
火灾扰乱生态系统,释放碳并减少碳吸收,这会增加大气中的二氧化碳浓度,使大气变暖,并引发更频繁、更剧烈的火灾。量化火灾后的恢复情况对于理解生态系统对火灾干扰的适应性和恢复力至关重要。来自卫星衍生的活跃火灾(约1公里)和总初级生产力(GPP)产品的观测结果显示,澳大利亚每年都会发生大面积火灾,导致植被生产力下降。在此,我们分析了2011年至2019年间澳大利亚1.7×10个受火灾影响像素(或1.5×10平方公里)的火灾后GPP恢复轨迹,其中1.3×10个像素(1.2×10平方公里)经历了单次火灾(单次火灾像素),0.4×10个像素(0.3×10平方公里)经历了两次或更多次火灾(多次火灾像素)。我们发现澳大利亚火灾后的GPP恢复强劲且迅速。88%的单次火灾像素在平均2.3年内恢复到火灾前水平的135%,而86%的多次火灾像素在平均1.2年内恢复到火灾前水平的115%。与森林生态系统(单次火灾像素为110%,多次火灾像素为108%)相比,非森林生态系统(如草原、灌丛和稀树草原)在火灾后的恢复幅度更高(单次火灾像素为138%,多次火灾像素为115%)。这种快速且强劲的火灾后GPP恢复受到火灾后降水、火灾(即火灾频率、强度)和火灾严重程度(损害、影响;陆地生态系统对火灾抵抗力的一个指标)的显著影响。具体而言,更高的火灾严重程度和更高的火灾后降水对火灾后恢复有积极影响,而火灾频率增加则有负面影响。此外,与气候或土地利用变化相比,火灾动态在长期年际大陆GPP变化中所起的作用较小,因为强劲且迅速的GPP恢复抵消了火灾短期内导致的GPP损失。