Suppr超能文献

机器学习识别瑞士男男性行为者中的性行为亚组。

Machine Learning Identifies Sexual Behavior Subgroups Among Men Who Have Sex with Men in Switzerland.

作者信息

Salazar-Vizcaya Luisa, Nicca Dunja, Christinet Vanessa, Kouyos Roger D, Vock Florian, Andresen Sara, Lehner Andreas, Haerry David, Günthard Huldrych F, Schmidt Axel J, Rauch Andri

机构信息

Department of Infectious Diseases, Inselspital Bern University Hospital, University of Bern, Anna-Seiler-Haus, Geschoss J, 3010, Bern, Switzerland.

Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zürich, Switzerland.

出版信息

Arch Sex Behav. 2025 Jul 7. doi: 10.1007/s10508-025-03187-2.

Abstract

Sexual behavior is heterogeneous and dynamic. Characterization of such complexity constitutes evidence for public health authorities and caregivers concerned with the framing of sexual health messages aimed at specific subgroups. We developed a machine-learning-based methodology for inference and characterization of such subgroups from longitudinal data on men who have sex with men (MSM) attending individual sexual health counseling sessions. Because longitudinal data take time to record, we assessed the ability of first visit data to predict subgroups' membership. Our methodology comprised two main steps: (1) Hierarchical clustering to group 2349 HIV-negative MSM based on their self-reported longitudinal sexual behavior during visits to Swiss sexual health counseling centers between November 2016 and April 2019; and (2) Random forest-based classification to predict subgroup membership from first visit data. We found six subgroups with significant differences in behavioral trends, most of which sharply deviated from the overall trends. Two subgroups, which contained 37% of the study population, accounted for over 70% of the overall increases in condomless anal intercourse with non-steady partners, group sex, and having more than five anal intercourse partners. Subgroup-specific trends in online-dating and group sex were heterogeneous with opposing trends across subgroups. Data from first visits predicted trends of sexual behavior with accuracy ranging from 64 to 86%. This study evidenced specific sexual behavioral subgroups that might benefit from customized sexual health messages, demonstrated that first visit registries could predict subgroups, and contributes an algorithmic alternative for establishing subgroups relevant to inform customized sexual health messages that capture sexual behavioral diversity.

摘要

性行为具有异质性和动态性。对这种复杂性的特征描述为关注针对特定亚群体制定性健康信息的公共卫生当局和护理人员提供了证据。我们开发了一种基于机器学习的方法,用于从参加个体性健康咨询会议的男男性行为者(MSM)的纵向数据中推断和描述此类亚群体。由于纵向数据需要时间来记录,我们评估了首次就诊数据预测亚群体成员身份的能力。我们的方法包括两个主要步骤:(1)分层聚类,根据2016年11月至2019年4月期间在瑞士性健康咨询中心就诊时自我报告的纵向性行为,对2349名HIV阴性的男男性行为者进行分组;(2)基于随机森林的分类,从首次就诊数据预测亚群体成员身份。我们发现了六个行为趋势存在显著差异的亚群体,其中大多数与总体趋势有很大偏差。两个亚群体占研究人群的37%,在与非固定伴侣的无保护肛交、群交以及有超过五个肛交伴侣的总体增加中占比超过70%。在线约会和群交的亚群体特定趋势存在异质性,各亚群体之间趋势相反。首次就诊数据预测性行为趋势的准确率在64%至86%之间。这项研究证明了可能受益于定制性健康信息的特定性行为亚群体,表明首次就诊记录可以预测亚群体,并提供了一种算法替代方法,用于确定与定制性健康信息相关的亚群体,以捕捉性行为多样性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验