一种预测冠状动脉钙化的新型列线图的开发与验证:一项单中心研究

Development and validation of a novel nomogram to predict coronary artery calcification: a single center study.

作者信息

Shen Xiangnan, Li Xia, He Fang, Su Honglei, He Hongtao, Kang Guobin

机构信息

Department of Orthopedics 2, Hebei Provincial Hospital of Chinese Medicine/The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, China.

Department of Cardiology 1, Hebei Provincial Hospital of Chinese Medicine/The First Affiliated Hospital of Hebei University of Chinese Medicine, 389 Zhongshan East Road, Chang'an District, Shijiazhuang City, 050000, Hebei Province, China.

出版信息

Eur J Med Res. 2025 Jul 7;30(1):587. doi: 10.1186/s40001-025-02887-8.

Abstract

OBJECTIVE

To identify the factors influencing coronary artery calcification (CAC), develop a predictive model for CAC, and evaluate its effectiveness.

METHODS

This retrospective study included 1,526 patients who underwent coronary CT scans at our hospital between January 2020 and October 2024. Patient data included basic demographic information (age, sex, BMI, smoking, alcohol consumption, hypertension, coronary artery disease, hyperlipidemia, diabetes, cerebrovascular disease, etc.) and laboratory test results (TSH, FT4, FT3, LDL, HDL, VLDL, TG, TCHO, etc.). Lasso and logistic regression analyses were conducted to identify significant factors, and a nomogram was developed. The model's performance was evaluated using calibration plots, ROC curves, AUC values, and decision curve analysis (DCA).

RESULTS

Univariate analysis showed that the non-calcification group had a longer history of hyperlipidemia and alcohol consumption, and higher triglyceride levels. In the calcification group, patients were older, predominantly male, had higher triglyceride blood glucose index (TyG) levels, and had longer durations of coronary artery disease, hypertension, diabetes, cerebral infarction, and smoking (P< 0.05). Multivariate analysis revealed that age, sex, and the duration of coronary artery disease, hypertension, diabetes, hyperlipidemia, smoking, and alcohol consumption were significantly associated with coronary artery calcification (P< 0.05).

CONCLUSION

This study identified sex, age, and the duration of coronary artery disease, hypertension, diabetes, hyperlipidemia, smoking, and alcohol consumption as key factors influencing coronary artery calcification. The predictive model developed using these factors demonstrated strong predictive performance.

摘要

目的

确定影响冠状动脉钙化(CAC)的因素,建立CAC预测模型并评估其有效性。

方法

这项回顾性研究纳入了2020年1月至2024年10月期间在我院接受冠状动脉CT扫描的1526例患者。患者数据包括基本人口统计学信息(年龄、性别、体重指数、吸烟、饮酒、高血压、冠状动脉疾病、高脂血症、糖尿病、脑血管疾病等)和实验室检查结果(促甲状腺激素、游离甲状腺素、游离三碘甲状腺原氨酸、低密度脂蛋白、高密度脂蛋白、极低密度脂蛋白、甘油三酯、总胆固醇等)。进行Lasso和逻辑回归分析以确定显著因素,并绘制列线图。使用校准图、ROC曲线、AUC值和决策曲线分析(DCA)评估模型性能。

结果

单因素分析显示,非钙化组高脂血症和饮酒史较长,甘油三酯水平较高。钙化组患者年龄较大,以男性为主,甘油三酯血糖指数(TyG)水平较高,冠状动脉疾病、高血压、糖尿病、脑梗死和吸烟的病程较长(P<0.05)。多因素分析显示,年龄、性别以及冠状动脉疾病、高血压、糖尿病、高脂血症、吸烟和饮酒的病程与冠状动脉钙化显著相关(P<0.05)。

结论

本研究确定性别、年龄以及冠状动脉疾病、高血压、糖尿病、高脂血症、吸烟和饮酒的病程是影响冠状动脉钙化的关键因素。利用这些因素建立的预测模型具有较强的预测性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索