Huete Samuel G, Coullin Killian, Chapeaublanc Elodie, Torchet Rachel, Benaroudj Nadia, Picardeau Mathieu
Biology of Spirochetes Unit, Institut Pasteur, Université Paris Cité, CNRS UMR 6047, F-75015 Paris, France.
Bioinformatics and Biostatistics Hub, Institut Pasteur, Universite Paris Cite, F-75015, Paris, France.
bioRxiv. 2025 Jul 4:2025.07.04.663154. doi: 10.1101/2025.07.04.663154.
Understanding the genetic basis of ecological adaptation is a fundamental challenge of evolutionary biology, often limited by the availability of diverse and curated datasets. are widely distributed, ancient bacteria found in diverse environments, offering a unique opportunity to explore ecological transitions. Despite their high diversity and the presence of globally important pathogens such as syphilis ( spp.), Lyme disease ( spp.), or leptospirosis ( spp.), remain poorly characterized as a phylum. Moreover, the recent discovery of non-spiral lineages has broadened its complexity and require a re-evaluation of the entire phylum's evolution. Here, we present the most comprehensive phylogenomic and functional analysis of , examining a curated dataset of 172 spirochaetal genomes representing all cultivable spirochete species. Our robust phylogenetic framework revisits the evolutionary rooting of this phylum and reveals that the Last Spirochaetal Common Ancestor (LSCA) diverged into two major clades, with species diverging early from the rest of . Ancestral genome reconstruction showed that the LSCA was a motile, endoflagellated bacterium with a heterotrophic metabolism, shedding light on the biology of one of the most anciently diverging bacterial phyla. Functional analysis revealed genomic signatures associated with key phenotypic adaptations within , such as independent loss of the characteristic spiral morphology and emergence of host-associated lineages. Notably, we found that loss of endoflagellar genes correlated with the appearance of non-spiral species. Lastly, we employed phylogenetic profiling to identify previously uncharacterized motility-associated gene families, whose role was then demonstrated experimentally. Overall, this study provides new evolutionary insights into how ecological specialization has shaped spirochete genomes, offering a framework to elucidate further the mechanisms driving key evolutionary transitions in this clinically relevant phylum.
理解生态适应的遗传基础是进化生物学的一项基本挑战,通常受到多样且经过整理的数据集可用性的限制。螺旋体是广泛分布于各种环境中的古老细菌,为探索生态转变提供了独特机会。尽管它们具有高度多样性,且存在梅毒(梅毒螺旋体属物种)、莱姆病(疏螺旋体属物种)或钩端螺旋体病(钩端螺旋体属物种)等具有全球重要性的病原体,但作为一个门,螺旋体的特征仍了解甚少。此外,最近发现的非螺旋谱系增加了其复杂性,需要对整个门的进化进行重新评估。在此,我们展示了对螺旋体最全面的系统基因组学和功能分析,研究了一个由代表所有可培养螺旋体物种的172个螺旋体基因组组成的经过整理的数据集。我们强大的系统发育框架重新审视了这个门的进化根源,揭示了最后一个螺旋体共同祖先(LSCA)分化为两个主要分支,其中一些物种比其他螺旋体更早分化。祖先基因组重建表明,LSCA是一种具有运动能力、内鞭毛的细菌,具有异养代谢,为这个最古老分化的细菌门之一的生物学特性提供了线索。功能分析揭示了与螺旋体内关键表型适应相关的基因组特征,例如特征性螺旋形态的独立丧失以及宿主相关谱系的出现。值得注意的是,我们发现内鞭毛基因的丧失与非螺旋物种的出现相关。最后,我们采用系统发育谱分析来识别以前未表征的与运动相关的基因家族,随后通过实验证明了它们的作用。总体而言,这项研究为生态特化如何塑造螺旋体基因组提供了新的进化见解,为进一步阐明驱动这个临床相关门中关键进化转变的机制提供了一个框架。