Oliver Devyn B, Ramachandran Shankar, Biswas Kasturi, Benard Claire, Doitsidou Maria, McKillop Hailey, Genao Noelia, Lemons Michele L, Francis Michael M
bioRxiv. 2025 Jul 19:2025.07.05.663213. doi: 10.1101/2025.07.05.663213.
A high degree of cell and circuit-specific regulation has presented challenges for efforts to precisely define molecular mechanisms controlling synapse formation and maturation. Here, we pursue an unbiased forward genetic approach to identify C. elegans genes involved in the formation and maturation of cholinergic synaptic connections with GABAergic motor neurons as indicated by the distribution of GFP-tagged postsynaptic AChRs in GABAergic dendrites. We identified mutations in 3 genes that identify key processes in synapse/circuit maturation: postsynaptic receptor assembly, cargo trafficking, and synapse structural organization. Mutation of the RUN domain (RPIP8, UNC-14, and NESCA) cargo adaptor unc-14 dramatically impacted both dendritic spines and overall GABAergic neuron morphology. In contrast, mutation of the nicotinic acetylcholine alpha subunit unc-63 caused a failure in AChR assembly in GABAergic neurons but did not significantly alter dendritic spine structure or abundance. Notably, specific expression of wild type unc-14 cDNA in either GABAergic neurons or presynaptic cholinergic neurons was not sufficient to rescue the unc-14 mutant phenotype while pan neuronal expression provided significant rescue, indicating that disruptions in GABAergic neuron morphology arise from compound effects. Finally, we obtained a mutation in the Liprin-α; synaptic scaffold syd-2 that produces a stop codon in a C-terminal SAM domain and has severe effects on dendritic spines and AChR localization. Our unbiased strategy identified key genes that implicate three distinct cellular processes important for synapse/circuit development and maturation. The identification of these genes from our screen highlights how mechanisms for receptor assembly, cargo trafficking and synapse structural organization each contribute to circuit connectivity.
高度的细胞和回路特异性调节给精确界定控制突触形成和成熟的分子机制带来了挑战。在此,我们采用一种无偏向的正向遗传学方法,以鉴定参与胆碱能突触连接形成和成熟的秀丽隐杆线虫基因,该连接与GABA能运动神经元有关,如绿色荧光蛋白标记的突触后AChR在GABA能树突中的分布所示。我们鉴定出3个基因中的突变,这些突变确定了突触/回路成熟中的关键过程:突触后受体组装、货物运输和突触结构组织。RUN结构域(RPIP8、UNC-14和NESCA)货物衔接蛋白unc-14的突变显著影响了树突棘和整体GABA能神经元形态。相比之下,烟碱型乙酰胆碱α亚基unc-63的突变导致GABA能神经元中AChR组装失败,但未显著改变树突棘结构或数量。值得注意的是,野生型unc-14 cDNA在GABA能神经元或突触前胆碱能神经元中的特异性表达不足以挽救unc-14突变体表型,而泛神经元表达则提供了显著的挽救效果,表明GABA能神经元形态的破坏源于复合效应。最后,我们在Liprin-α;突触支架syd-2中获得了一个突变,该突变在C末端SAM结构域产生一个终止密码子,并对树突棘和AChR定位有严重影响。我们的无偏向策略鉴定出了关键基因,这些基因涉及对突触/回路发育和成熟重要的三个不同细胞过程。从我们的筛选中鉴定出这些基因突出了受体组装、货物运输和突触结构组织机制如何各自对回路连接性做出贡献。